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Introduction

This Diploma Thesis has been developped inside the ATLAS group of the
Laboratory of High Energy Physics of Paris (LPNHE). The ATLAS detector
will begin its data taking in 2007 in the Large Hadron Collider of the CERN,
in Geneve; it has been built mainly for the search of the Higgs boson (the
only particle of the Standard Model not yet observed) and new physics, like
the search of Super Symmetric particles, but also for very precise measures
on the Standard Model physics (quark top physics, CP violation...).

ATLAS is a multi-scope detector that has a cylindrical symmetry with
the axis parallel to the beam pipe. From the axis of symmetry moving
in the radial direction we find the inner detector, the central solenoid, the
calorimeters and the muon spectrometer.

The analysis of the performances of the End-Cap inner wheel, located
close to the beam axis, of the ATLAS electromagnetic calorimeter is the
main goal of this thesis. Test Beam data of 2004 from electron beams have
been used.

Before getting to the study of its performances in energy and position
reconstruction, we will develop some preliminary analysis. The first concerns
the High Voltage versus Energy curve, that is, how energy changes varying
the potential applied to the electrods of the calorimeter. This study is needed
for the case where the nominal value of the potential could not be applied: if
we know the shape of the Energy versus High Voltage curve we will be able
to perform the necessary corrections.

Then we will briefly analyze the signal shape and the noise, to quantify
its influence on the energy measurement of physical events.

The central part of this thesis will be dedicated to the High Voltage
corrections that have to be implemented in order to obtain an uniform energy
response. In fact in the End-Cap the liquid argon gap is not constant in the η
direction so to have an uniform response we should apply to the electrodes a
continuously varying potential. Actually, the potential is set by steps (two in
the EMEC inner wheel), so remains a non-uniformity for each High Voltage
sector that has to be taken in account. Finding the corrections that give the
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viii INTRODUCTION

most uniform response represents the main task of this work.
In the last chapter we will study the spatial resolution of the EMEC inner

wheel. The guideline in the construction of the inner wheel was not that to
give it a good spatial resolution, because its main goal is the measurement
of the missing energy; anyway a precise measurement of spatial resolution
(especially the resolution on the φ coordinate) will give orders of magnitude
useful for a simulation on the measurement of the luminosity using a channel
in which a pair of electrons is produced at a φ-angle of 180 in the high-η
region.



Chapter 1

The Standard Model

The modern particle physics describes the world in terms of particles: the
matter is composed by elementary particles and even the interactions be-
tween them are interpreted as exchanges of another kind of them called field
particles. The theory that describes these interactions and whose results are
very well confirmed by experiments so far is called Standard Model and it
was formulated by Weinberg, Glashow and Salam.

The interactions mediated by the field particles are the following:

• electromagnetic: the field particle is the photon, a massless and spin
1 particle. The electromagnetic interaction concerns all the particles
that have an electric charge.

• weak: it is the force that causes the β decays. It is mediated by three
massive vector bosons: W+ ,W− and Z0.

• strong: it is the force that keeps the constituents of the nuclei together.
The field particles are 8 massless vector bosons called gluons.

• gravitation: it is the force that acts between all particles with mass.
Its field particles have not been yet directly observed. They should be
spin 2 particles called gravitons.

In fact the Standard Model describes only 3 of these interactions: it has
unified the three first interactions but it cannot describe the gravitation. The
unification of the Standard Model with a Quantum theory of the gravitation
is maybe the most fascinating theoretical challenge.

1



2 CHAPTER 1. THE STANDARD MODEL

e-

e+

Z0/γ

f

f

Figure 1.1: Feynman diagram for lepton pair production mediated by the
photon or by the Z bosons. The latter is possible even at energies smaller
than the Z mass.

1.1 The elements of the Standard Model

The matter particle are called fermions because they obey the Fermi-Dirac
statistics. They have half-integer spin and they can further on be divided
in leptons and quarks and they are grouped in three different families. The
quarks are the particles that compose the mesons (as π0, π+, π−, J/Ψ)
and the baryons (the proton, the neutron etc...). We have to add that each
fermion has an antiparticle, that is, a particle of the same mass, spin but
with an opposite electric charge.

The field particles (the photon, the W+, W−, Z0 and the gluons) are
integer spin particles called bosons that obey the Bose-Einstein statistics.
When they mediate the interactions, they are virtual particles: that is, if
we consider the four-momentum E = (m, 0, 0, pz) and the Minkowsky metric
(1, 0, 0,−1), for them the relation

E2 = m2 + p2 (1.1)

does not occur. These particle are created and then annihilated in a time
interval shorter than ∆E/h̄ (from the Heisenberg incertitude relations), so
that mass conservation is preserved. For this reason we can have the process
of Figure 1.1 even at energies smaller than the Z mass.

The Standard Model is a Quantum Field Theory based on the gauge
invariance under the groups SU(2)L×U(1)Y for the electroweak domain and
under the group SU(3)C for the sector of strong interaction. So we have to
use a Lagrangian that is invariant under these transformations. We consider
for the time being only the electroweak sector.

The modern approach to a Quantum Field Theory is to take as basic
requirement the invariance with respect to local phase transformation of the
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Fam. Leptons Quarks
Part. Charge Mass Part. Charge Mass

1 e -1 511 keV/c2 u 2/3 1 MeV/c2

νe 0 < 1eV/c2 d -1/3 3-9 MeV/c2

2 µ− -1 105.6 MeV/c2 c 2/3 1.15 GeV/c2

νµ 0 < 0.19MeV/c2 s -1/3 75-170 MeV/c2

3 τ− -1 1.777 GeV/c2 t 2/3 178GeV/c2

ντ 0 < 18.2 MeV/c2 b -1/3 4.0-4.4 GeV/c2

Table 1.1: The matter particles of the Standard Model.

matter fields: then we are naturally led to introduce a gauge field coupled
to the matter field through the replacement of the ordinary derivative with
a covariant one.

1.2 The Quantum Electro-Dynamics

Let us consider the free lagrangian density of the QED [1]

L = ψ(x)(iγµ∂µ −m)ψ(x) (1.2)

and the following local phase transformations

ψ(x) → ψ
′

(x) = ψ(x)e−iqf(x)

ψ(x) → ψ
′

(x) = ψ(x)e+iqf(x)

}

(1.3)

Under these transformation, the QED lagrangian density is not invariant, it
becomes

L → L′

0 = L + qψ(x)γµψ(x)∂µf(x) (1.4)

Invariance in the theory can be restored if we augment L0 by a term LI
such that the new lagrangian density L = L0 + LI is invariant. This can be
achieved by associating with the matter field ψ(x) a gauge field Aµ(x) which
transforms according to the gauge transformation

Aµ(x) → A
′

µ = Aµ(x) + ∂µf(x) (1.5)

The interaction between matter and gauge field is then specified by replacing
the ordinary derivative ∂µ by the covariant derivative

Dµψ(x) = [∂µ + iqAµ(x)]ψ(x) (1.6)

Under the coupled gauge transformations (1.3) and (1.5) the covariant deriva-
tive transforms in the same way as the field ψ(x) itself.
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1.3 The weak interactions

At the beginning we assume that all leptons are massless, so that the free-
lepton lagrangian density is

L′ = i[ψl(x)γ
µ∂µ] (1.7)

We know that weak interactions involve only the left handed lepton fields,
so it is better to write them as

ψL(x) = PLψ(x)
ψR(x) = PRψ(x)

}

≡ 1

2
(1 ∓ γ5)ψ(x) (1.8)

If we combine the ψL
l and the ψL

νl
in a two-component field of the form

ΨL
l (x) =

(

ψL
νl
(x)

ψL
l (x)

)

(1.9)

we get

L0 = i[Ψ
L

l (x)∂µγ
µΨL

l (x) + ψ
R

l (x)∂µγ
µψR

l (x) + ψ
R

νl
(x)∂µγ

µψR
νl
(x)] (1.10)

For the two-component left handed field the possibility arises of two-dimensional

transformations that leave bilinear forms Ψ
L

l (x)...ΨL
l (x) invariant. For this

purpose we introduce three Hermitian matrices

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

(1.11)

which satisfy the commutation relations

[τi, τj] = 2iεijkτk (1.12)

The operator U(α) ≡ exp(iαjτj/2) is unitary for any three real numbers
α = (α1, α2, α3), and the set of transformations

ΨL
l (x) → Ψ

′L
l (x) = U(α)ΨL

l (x) ≡ exp(iαjτj/2)ΨL
l (x)

Ψ
L

l (x) → Ψ
′L

l (x) = Ψ
L

l (x)U †(α) ≡ Ψ
L

l (x)exp(−iαjτj/2)

}

(1.13)

leaves bilinear terms like those in (1.10) invariant. The operators U(α) are
2 × 2 unitary matrices with the property that det U(α) = +1 and they
are called SU(2) transformations. Then we define each right-handed lepton
field to be invariant under SU(2) transformations. However, these are global
transformations while we are interested in local phase transfomations; we
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will see that if we want to generalize (1.13) to local transformations, we have
to introduce some gauge fields to preserve the invariance. These local phase
transformations are

ΨL
l (x) → Ψ

′L
l = exp[igτjωj(x)/2]ΨL

l (x)

Ψ
L

l (x) → Ψ
′L

l = Ψ
L

l (x)exp[−igτjωj(x)/2]
ψR

l,νl
→ ψ

′R
l,νl

(x) = ψR
l,νl

ψ
R

l,νl
→ ψ

′R

l,νl
(x) = ψ

R

l,νl



























(1.14)

where ωj(x), j = 1, 2, 3 are three arbitrary differentiable functions of x and
g is a real constant that will play the role of a coupling constant. If we apply
them to (1.10) we note that the lagrangian is not invariant but transforms
as

L0 → L′

0 ≡ L0 −
1

2
gΨ

L

l (x)τjγ
µ∂µωj(x)Ψ

L
l (x) (1.15)

We obtain an invariant Lagrangian density if we replace the ordinary deriva-
tive by the covariant one:

∂µΨL
l (x) → DµΨL

l (x) = [∂µ + igτjW
µ
l (x)/2]ΨL

l (1.16)

In (1.16) we were forced to introduce three real gauge fields. To have covari-
ant derivatives that transform as the matter fields, such gauge fields have to
transform as follows

W µ
i →W µ′

i (X) = W µ
i − ∂muωi(x) − gεijkωj(x)W

µ
k (x) (1.17)

We consider now U(1) local phase transformations for the weak-interaction
lagrangian:

ψ(x) → ψ
′

(x) = exp[ig′Y f(x)]ψ(x)

ψ(x) → ψ
′

(x) = ψ(x)exp[−ig′Y f(x)]

}

(1.18)

g′ is a real number, f(x) an arbitrary function and Y = −1/2,−1, 0 is the
weak hypercharge associated respectively with the fields ΨL

l (x), ψR
l (x), ψR

νl
.

As in the QED, the lagrangian is invariant replacing the ordinary derivative
by the covariant one, with the gauge field transforming in the usual way.

∂µψ(x) → Dµψ(x) = [∂µ + ig′Y Bµ(x)]ψ(x)
Bµ(x) → B

′µ(x) = Bµ(x) − ∂µf(x)

}

(1.19)

We now define the fields W µ
i (x) to be invariant under U(1) gauge transfor-

mations and Bµ under SU(2) ones. So the lagrangian density is said to be
SU(2) × U(1) invariant and the interaction part of the lagrangian is

LI = −gJµ
i (x)Wiµ(x) − g′Jµ

Y (x)Bµ(x) (1.20)
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We introduce the following non-Hermitian gauge field:

Wµ(x) =
1√
2
[W1µ(x) − iW2µ(x)] (1.21)

and this linear combination of the Hermitian fields Aµ and Zµ

W3µ(x) = cosθWZµ(x) + sinθWAµ(x)
Bµ(x) = −sinθWZµ(x) + cosθWAµ(x)

}

(1.22)

where θW is the weak mixing angle. If we require that the electromagnetic
field is coupled to electric charge in the usual way (by the term −sµ(x)Aµ(x))
we have to put gsinθW = g′cosθW = e, and with some calculations we arrive
to:

LI = −sµ(x)Aµ(x) − g

2
√

2
[Jµ†(x)Wµ(x) + Jµ(x)W †

µ(x)]

− g
cosθW

[Jµ
3 (x) − sin2 θW s

µ(x)/e]Zµ(x).
(1.23)

Jµ
1 , J

µ
2 are the weak isospin currents, while the terms that multiply the

Zµ represent a neutral current (sµ is the electromagnetic current). Finally,
we have to add terms that describe the gauge bosons when no leptons are
present. For the moment we will consider these bosons massless. These terms
are

LB = −1

4
Bµν(x)B

µν(x) − 1

4
Giµν(x)G

µν
i (x) (1.24)

with

Bµν(x) ≡ ∂νBµ(x) − ∂µBν(x)
Gµν

i ≡ ∂νW µ
i (x) − ∂µW ν

i (x) + gεijkW
µ
j (x)W ν

k (x)
(1.25)

We have to observe that our Lagrangian does not have any mass term.
The only fermionic term that is invariant under U(1) transformations is

mψfψf = m(ψL
fψ

R
f + ψR

fψ
L
f ) (1.26)

where ψL
f are the isospin doublets for leptons (l, ν) and quarks (qu, qd) and

ψR
f are the singlets. But this term mixes up the left and right components:

it is not invariant under the SU(2)L transformations (the weak interaction
concerns only the left components of the fermion doublets). We have to intro-
duce the mass terms with a mechanism which retains the gauge invariance.

The method currently used to give the particles a mass is called Higgs
mechanism: we introduce a complex scalar field that spontaneously breaks
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Figure 1.2: Potential used for the Higgs mechanism

the symmetry of the Lagrangian when we give it a non vanishing vacuum
expectation value. One possible way is to choose the following potential

V (φ) = µ2|φ|2 + λ|φ|4 with µ2 < 0 and λ > 0 (1.27)

using these conditions we have a minimum of the potential (in the case of
a complex scalar field we have a circumference of minimum) for field value
different from zero. When we choose one minimum we break the symmetry.
The Higgs Lagrangian is then

LHiggs = (Dµφ)(Dµφ)† − V (φ) (1.28)

with the covariant derivative of the form

Dµ = ∂µ − ig
Y

2
Bµ − ig′

σa

2
W aµ (1.29)

With the potential described above, we are led to

|〈0|φ|0〉| =
√

−µ2

2λ
≡ v√

2
(1.30)

where v is the v.e.v, that is, the value of the Higgs field in the vacuum. So
we can rewrite the Higgs potential using

φ(x) = exp[i
~f

2
· ~θ(x)] 1√

2

(

0
v + σ(x)

)

(1.31)
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The fields θ(x) are massless fields called Goldstone bosons; they are not
physical and they can be eliminated by the rotation

φ(x) → exp[ − 1
~f

2
· ~θ(x)]φ(x) (1.32)

Using this gauge, the kinetic term becomes

(Dµφ)(Dµφ)† =
1

2
∂µσ∂

µσ +
g2

4
(v + σ)2[W †

µW
µ +

1

s cos2 θW

ZµZ
µ] (1.33)

We see that the mass term for the bosons W and Z appear, while the photon
remains massless

MW = 1
2
vg

MZ = 1
2 cos θW

vg = MW

cos θW

}

(1.34)

The Higgs mechanism can be applied also to give mass to the fermions. One
has to introduce in the Lagrangian some terms called Yukawa terms

LY ukawa = (qu, qd)
[

c(d)

(

φ(+)

φ(0)

)

(qd)R + c(u)

(

φ(0)†

−φ(+)†

)

(qu)R

]

+(νl, l) c
(l)

(

φ(+)

φ(0)

)

(l)R + h.c

(1.35)

and after the spontaneous symmetry breaking we get

LY ukawa = −(1 +
H

v
)(mqd

qdqd +mqu
ququ +mlll) (1.36)

with

(mqd
, mqu

, ml) = −v
2
(c(d), c(l)) (1.37)

1.3.1 CKM matrix

We have to precise that the fermions mass eigenvalues written in Table 1.1
differ from the eigenstates of the weak interaction. To go from one base to
the other we have a 3 × 3 matrix called the Cabibbo - Kobayashi- Maskawa
matrix (CKM). This matrix has to be applied to the quarks of charge -1/3:







d
′

s
′

b
′





 =







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













d
s
b





 (1.38)
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A parametrisation of this matrix has been performed by Wolfenstein [2]

VCKM =







1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1





 (1.39)

with λ ∼ 0.22. We actually see that the couplings between quarks of the
same family are prefered.

1.4 The Strong Interactions (QCD)

As for the electro-weak interactions, we try to formulate a Lagrangian that
will be invariant under a specific transformation group. In this case the group
is the SU(3)C one, where C is the color quantum number [3]. There are 8
gluons described by this gauge group. The QCD Lagrangian can be written
as:

LQCD = LBosons + LFermions

= −1
4
F a

µνF
a µν + i

∑

q (ψi
qγµ(Dµ)ijψ

j
q −mqψi

qψ
j
q)

(1.40)

with
F a

µν = ∂µG
a
ν − ∂νG

a
µ − gsfabcG

b
µG

c
ν

(Dµ)ij = δij∂µ − igs

∑

a

λa
ij

2
Ga

µ

(1.41)

For a detailed discussion on QCD and, in general, on non-Abelian theo-
ries, see [3]

1.5 Successes and failures of the SM and fu-

ture scenarios

The Standard Model has had several successes:

• It is a Quantum Field Theory that is renormalizable and that unifies
electromagnetic, weak and strong interactions.

• It resolves the problem of giving a mass to the vector bosons and to
the fermions.

• The standard Model has been deeply tested in the electro-weak sector
and all its predictions differ from the experimental data by less than
0.1%
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However, the Standard Model presents some problems.

• The Higgs boson has not been observed yet. Its search is the main goal
of the LHC.

• if we consider a Great Unification Theory (GUT), the electroweak scale
(∼ 200 GeV) is very small if compared to the great unification scale
(energy to which electroweak and strong interactions converge).

• In a GUT, the running coupling constants of the electromagnetic, weak
and strong interactions do not converge.

• The Standard Model is based upon 19 parameters: it is a great number
and there is no explanation of the fact that the parameters number
should actually be 19.

• It does not explain the neutrino masses.

All these things make us think that the Standard Model is “only” an approx-
imation of a more fundamental theory.

There are lots of theories that are trying to resolve the failures of the
Standard Model. The most promising one is the Super Symmetric Standard
Model: the supersymmetry is an extension of the Poincaré group. The basic
idea is the association of a fermion (respectively a boson) to each boson (re-
spectively fermion) in a gauge supermultiplet. The particles in the same su-
permultiplet have the same quantum numbers with the exception of the spin
number that differs of 1/2 in h̄ units. These particles allow the cancellation
of the radiative corrections that in the S.M. make the Higgs mass divergent.
Moreover, using these supersymmetric particles, the three coupling constants
converge to the same value to the same energy scale. The supersymmetric
partners of the fermions are called sfermions (squark, sleptons...) while the
bosons’ partners have names that end up with −ino (Winos, photinos...).

However there is a problem with this model: if the Supersymmetry ex-
ists at the electroweak energy scale, we should have already observed the
supersymmetric partners because they have the same mass as the ordinary
particles, but none of such particles has been detected. So we are led to
think that the supersymmetry is spontaneously broken, giving origin to very
massive (at least 100 GeV) supersymmetric partners [4], [5].

A detailed description of Super Symmetric Theories are beyond the scope
of this thesis. We only say that Super Symmetric Theories have a lot of
application in other physical fields as cosmology, where the lightest super-
symmetric particles can be at the responsible of the Dark Matter problem.



Chapter 2

The ATLAS experiment at
LHC

The LHC hadronic collider will be a machine for high energy physics research
where particles will collide at center of mass energies never reached before.
There will be collisions between proton-proton packets with a center of mass
(CM) energy of 14 TeV with a luminosity of 1034cm−2sec−1. The main goal
of this machine is the discovery of the Higgs boson, the only particle of the
Standard Model not yet observed, but at LHC there will be also searches
for supersymmetric particles, for heavy intermediate vector bosons (W’ Z’),
study of CP violation and even heavy ions will be accelerated to study the
matter behaviour at high density.

The LHC collider is being built in the same tunnel as LEP (the previous
electron-positron collider), so it has a length of 27 km. The proton packets
will circulate in opposite direction and there will be 4 interaction points
where the following detectors will be placed:

• ATLAS (A Toroidal Lhc ApparatuS): designed for the studies of pro-
cesses with high momentum transfer and photons, leptons and hadronic
jets identification.

• CMS (Compact Muon Spectrometer): same potentiality as ATLAS.

• LHCb, for the study of quark b physics, important for CP violation.

• ALICE (A Large Ion Collider Experiment), it will study the interac-
tions between heavy ions.

A proton-proton collider has been chosen, instead of another electron-
positron one, especially because of the synchrotron radiation. In fact charged
particles, when they are accelerated, emit radiation. In a circular machine

11
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the radiation is a continuous spectrum one, called synchrotron radiation and
this causes loss of energy. In time unit this is

dE

dt
∝ γ4

R
(2.1)

where

γ =
1√

1 − β2
=
E

m
with β =

v

c
(2.2)

We can see that at the same energy, heavier particles have smaller γ
values and so a smaller loss of energy by synchrotron radiation.

2.1 Proton-Proton interaction and Higgs bo-

son production.

The proton-proton interactions are more complicated than the ones we had at
LEP, because the protons are not elementary particles and their description
is based on simplified models as the parton model. This model describes a
baryon as composed by elementary particles (quarks and gluons) that can
move freely inside the proton (asymptotic freedom [3]) but that do not exist
as isolated particles. The phenomenon of the asymptotic freedom brings an
uncertainty on the CM energy value in a parton-parton interaction, because
we do not know exactly which fraction of the hadron momentum is carried by
a single gluon or quark, we know only the energy of the two hadron systems.
For inclusive processes, the energy and the momentum of a particle can be
written as

E = mT cosh y, px, py, pz = mT cosh y (2.3)

where mT is the transverse mass defined as mT = m2 + p2
x + p2

y and y is the
rapidity:

y =
1

2
log
(

E + pz

E − pz

)

= log
(

E + pz

mT

)

= tanh−1
(

pz

E

)

(2.4)

Under a Lorentz boost in the z direction, the rapidity changes as y → y −
tanh−1(β) and so it is invariant under a Lorentz transformation. Hence it
is useful to use the rapidity as a coordinate because in this way we’ll get a
Lorentz invariant cross section. Introducing the the 4-momentum p in polar
coordinates p = (E, px, py, pz) = E(1, β sinθ cosφ, β sinθ sinφ, β cosθ) we get:

y = −1

2
log

1 − β cosθ

1 + β cosθ
(2.5)
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and because for particles that travel at the speed of light β → 1 it is useful
to use

η = −log (tan
θ

2
) (2.6)

where the quantity η is called pseudorapidity and can be measured in any
case, even when the mass and the momentum of the particle are unknown.
For this reason in hadronic colliders the events are described using the coor-
dinates η, φ and z.

We now briefly describe the Standard Model Higgs production and decay
channels to which the greatest attention will be given at LHC.

Figure 2.1: Left : Higgs production by the gluon fusion channel Right : Higgs
production by the vector boson fusion

Higgs production.

• gluon fusion dominates for low higgs mass values but also for values of
1 TeV. Its contribution to the cross section is 50%. It is even possible
to have a gg → tt, H.

• vector boson fusion qq → qqV ∗ V ∗ → qqH0 important for masses of the
order of Tev.

• Higgsstrahlung qq → V → V H0 but it is more important in electron-
positron colliders as LEP.

Higgs decay. Even the decay processes cross sections vary with the Higgs
mass.

• 80 < MH < 130 GeV . The most important channels are H → γγ
and H → 4e. In this region the process with the highest cross section
is the decay in bb but the QCD background is too high and it is very
difficult to distinguish jets due to b decays from other jets.
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Figure 2.2: Three channels of the Higgs decay into two photons.

• 130 < MH < 600 H → ZZ → 4l. The reconstruction of events with
lepton pairs allows us to get the Higgs mass from the value of their
invariant mass.

• MH > 600 GeV. The most interesting decays are H → ZZ → l−l+ νν
and H0 → W+W− → lνl + 2jet. The first requires a very high preci-
sion in the missing pT determination due to the impossibility to detect
neutrinos, the second great capacity to detect the two jets among those
of the background and to reconstruct their invariant mass.

Figure 2.3: How the cross sections for Higgs production change with the
Higgs mass.
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In Figure 2.4 the significance for the expected signal of the Higgs boson for
various channels is given. The significance is defined by the relation:

S =
S√
B

(2.7)

where S is the number of events what we can attribute to Higgs production
and B is the number of background events. Standard significance value for
discovery is S > 5σ.

Figure 2.4: Significance for the Higgs boson discovery for various channel for
an integrated luminosity of 105 pb.

2.2 The ATLAS detector

ATLAS is a multiscope detector, that is an ensemble of many subdetectors,
all of them with a very specific task. The ATLAS detector has a cylindrical
symmetry with the axis parallel to the beam. From the center upstream to
the radial coordinate we find different components. Briefly:

Inner Detector, whose goal is the reconstruction of tracks of charged par-
ticles in the interaction point closest region.

Central Solenoid, that produces the magnetic field necessary to bend the
charged particles tracks and to determine their electric charges and their
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Figure 2.5: Detector general picture: Atlas is 42 metres long and 22 metres
high

transverse momentum.

Electromagnetic calorimeter, whose task is position and charged particle
deposited energy determination.

Hadronic calorimeter, for the measurements of the energy and the posi-
tion of hadrons and hadrons jets.

Forward calorimeter, that measures energy and position of charged part-
cles created in region with η > 3.2 up to η = 4.9.

Toroidal magnets, to deflect muons trajectory, because they cross easily
the calorimeters. The goal is to measure their transverse momentum and
energy by the muon spectrometer.
We now examine in a more detailed way the different components.

2.2.1 Inner Detector

The Inner Detector (ID) is the subdetector closest to the beam pipe and is
composed of three principal components [6]:
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• Pixel vertex detector. The pixel structure has been studied to ensure
a high resolution in tracks and a good reconstruction of production
and decay vertex (it will be fundamental especially for processes that
involve the study of the kinematics of b quarks and τ decays ). Because
of its closeness to the center of the interactions, it will be subjected to
a very high radiation dose to which it will have to resist for at least
ten years (about 300 kGy ) so, very important will be also its radiation
resistance.

• Semiconductor trackers. Made up of 8 silicon microstrips layers, with
the task to measure in 8 points the R, φ and z coordinates of the
events. The spatial resolution achievable is of 16 µm in R and φ and
580 µm in z.

• Transition radiation trackers. Composed by straw detectors each one
with a 4 mm diameter and with a golden wire of 30 µm of diameter in
the middle. The channels for the signal read out are 420000 and each
one provides the drift time measurement with a spatial resolution of
170 µm.

Figure 2.6: The inner detector and its components.

As we said the inner detector task is the determination of the trajectory
of charged particles that have origin in the interaction points of the proton
packets. This has to occur in a way that causes the minimum energy absorp-
tion, because their energy will be measured by the calorimeters. Then the



18 CHAPTER 2. THE ATLAS EXPERIMENT AT LHC

presence of material causes the phenomenum of bremsstrahlung, pair produc-
tion that increase the background noise and generate false signals. Moreover,
the presence of pair production increases the showers dimension, making the
reconstruction of their direction worse. So is of critical importance the com-
promise on the material quantity, that should not be too much in order not
to attenuate the signal and not too little in order not to worsen the capacity
of trajectory reconstruction.

2.2.2 The central solenoid.

The central solenoid produces a magnetic field of 2 Tesla that encloses the
inner detector. Liquid helium temperatures are needed to put in supercon-
ductive state the material that constitute the spires of the solenoid. Keeping
these temperatures is one of the numerous technological challenges required
by an optimal behaviour of ATLAS.

2.2.3 Calorimeters.

The calorimeters will play a crucial role in LHC because while the intrinsic
resolution of all the other sub-detectors decreases when the energy grows,
their relative resolution gets better with the energy [7]. In the search of
the Higgs boson, for energy from 80 GeV up to the limit of 1 TeV im-
posed by theory, the physicists will rely heavily on the informations given
by the calorimeters, because the preferential channels will be H → γγ and
H → ZZ → 4l and so the final state reconstructions will come from EM
calorimeters (with the exception of H → ZZ → 4µ, see section 2.2.4).

The tasks of the calorimeters present in all hadrons colliders are the fol-
lowing ones:

• energy and position measurements of photons and electrons.

• energy and direction of jet and transverse momentum for each event.

• particle identification.

• event selection.

At LHC these goals represent an enormous technological challenge because
the high center of mass energy requires an excellent energy resolution from
the GeV up to the TeV and the luminosity gives origin to 20 soft collisions on
average at a luminosity of 1034 at each bunch crossing (that is, every 25 nsec),
with lots of problems of pile-up. Of course is also required a high radiation
resistance for at least 10 years to guarantee the operativity of the detector.
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Figure 2.7: Sketch of the EM calorimeters.

Although the EM calorimeters will be employed in lots of operations, the
greatest part of the studies will be devoted to the two channels for the Higgs
bosons and to the search for supersymmetric particles.

Fundamental physical requirements.

• rapidity coverage: the largest acceptance in pseudorapidity values is
needed to observe processes as H → γγ or H → 4e.

• electron reconstruction: is necessary for the tagging of semi-leptonic
decay of quarks b, because reconstruction and identification of these
electrons will improve by 10% the ATLAS b-tagging efficiency. This
will be important for the decay H → bb, for b quark physics and for
supersymmetric particle searches.

• excellent energetic resolution between 10 and 3000 GeV: for the two
fundamental channels for the Higgs boson search, the maximal resolu-
tion on the Higgs mass has to be of the order of 1%. Generally, for a
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calorimeter, the energy resolution is defined by the following relation:

∆E

E
=

b

E
⊕ a√

E
⊕ c (2.8)

where b is the noise term (of the order of 400 MeV/E in ATLAS) due
to electronic noise of the signal extraction chain, a is the sampling
term due to the fluctuations of the energy deposited from the shower
in the calorimeter and has to be smaller than 10%/

√
E. The 1/

√
E

behaviour can be explained reminding that the deposited energy in
the active medium is proportional to the number N of the produced
secondary particles. The statistical error in this number, ∆N , can be
assumed to be its square root: so

(

∆E

E sampling

)

∼ ∆N

N
=

1√
N

∼ 1√
E
. (2.9)

Finally, c is a constant term generated by construction non-uniformities.
This one is expected to be of the order of 0.7%. Multiplying the ex-
pression for the energy we can see that at high energies the dominant
term is the constant one

∆E = b ⊕ a
√
E ⊕ cE (2.10)

and it is for this reason that it has to be kept very small, while the
noise contribution gets smaller at high energy.

• Thickness of at least 24X0 to contain high energy showers in order to
prevent that the resolution will get worse at high energy.

• shower direction measurements in θ with a (50 mrad)/
√
E (E in GeV)

resolution and excellent electron-jet and photon-jet separation, very
important for background reduction in H → γγ channel and in the
H → 4e one.

• noise: the phenomena that contribute to the noise are the pile-up and
the electronic noise of the read out chain. To minimize the pile up a
fast response from the detector is needed and very fast electronics while
for the electronic noise we need a high granularity.

Barrel and End-Cap calorimeters

The EM calorimeter is divided into a barrel part with |η| < 1.45 , divided
in two identical half barrels separated by a small gap of 6mm, and two end
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caps 1.35 < |η| < 3.2 composed by two coaxial wheels, the outer that covers
the region of 1.35 < |η| < 2.5 and the inner covering the 2.5 < |η| < 3.2
regions. In the range with a pseudorapidity smaller than 1.8 the calorimeter
is preceded by a presampler detector used to correct for the energy lost in
the material upstream of the calorimeter.

Figure 2.8: Longitudinal section of the EM calorimeters.

Generally speaking the EM calorimeters are divided into two kinds: sam-
pling calorimeters and homogeneous calorimeters.

• In the sampling calorimeters there is an alternation of layers of absorber
material and of active material, in which the electric charges generated
by the ionization of the active material are collected from the electrodes.

• the homogeneous ones are composed by only one material, that is at
the same time the absorber and the active material. These calorimeters
are characterized by a very high energy resolution (a few %/sqrtE) but
they usually lack the longitudinal segmentation.

A sampling lead-liquid argon calorimeter has been chosen for ATLAS
especially for reasons of cost and linearity of the response. However, with a
sampling calorimeter we do not get all the energy but only a fraction that
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η lead thickness

0-0.8 1.5 mm
0.8-1.4 1.1 mm
1.4-2.5 1.7 mm
2.5-3.2 2.2 mm

Table 2.1: Absorber thickness at different η values.

moreover undergoes statistical fluctuations. This fraction is called sampling
fraction and measures the ratio between the energy deposited in the active
material by a minimum ionizying particle and the total energy lost in the
detector (absorber+active material). In ATLAS this sampling fraction has
the value:

F =
∆ELAr

∆ELAr + ∆EPb

' 19% (2.11)

It is the a term of the Formula 2.10 that takes in account these fluctuations.

ATLAS EM Barrel Calorimeter : The Barrel calorimeter is a lead-
liquid argon detector with an accordion geometry, where Kapton-copper elec-
trodes and lead-absorber plates are interleaved over its full coverage.

The accordion geometry provides a complete φ symmetry without az-
imuthal interruption. As we can see in the Table 2.1 the lead thickness has
been chosen as a function of pseudorapidity to optimise the calorimeter per-
formance in terms of energy resolution. The liquid argon gap has a constant
thickness in the barrel while in the end cap, as described later, it varies with
the radius in order to compensate the fact that in each wheel the absorbers
have a constant thickness.

The EM barrel calorimeter is segmented in three longitudinal samplings:

• The first sampling has a thickness of 6 X0 and is divided in narrow
strips in the η direction that give a fine scan. It has the role to identify
with a great precision the direction of the electromagnetic shower and
to determine its three-dimensional structure with the information on
the φ direction. Furthermore it has to reject π0 and jets background
for physics channels involving isolated photons. It has a granularity of
0.0031 × 0.025. The choice of a coarser strip size in φ is a consequence
of the fact that showers that start in front of the solenoid are smeared
in φ by the magnetic field. So it is useless trying to measure their fine
structure in φ.
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Figure 2.9: Readout granularity of the EM calorimeter.

• The second sampling has a thickness of 18 X0 and gets almost the
total energy of the shower. Its granularity is of 0.025 × 0.025. This
granularity derives from the Moliere radius of the calorimeter (∼ 2.5 cm
in the barrel) and allows us to use cluster sizes which are a compromise
between the shower lateral containment and the contribution to the
electronic and pile-up noise to the energy measurement. Moreover, this
granularity allows us to distinguish between electromagnetic showers
from showers produced by pions or jets. Up to energy of 50 GeV it
is possible to use only the first two samplings, in order to avoid the
contribution of electronic and pile-up noise of the third sampling to
the energy measurements.

• The third sampling has a 12 X0 length and a coarser granularity be-
cause there is no more the necessity to determine the shower direction
but only to collect the residual energy.

ATLAS EMEC The EMEC will be described in detail in section (2.3).
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Hadronic Calorimeters

ATLAS has also an hadronic calorimeter for the jet and hadrons study: it is
a sampling calorimeter composed by a barrel sector (divided in a central part
that covers the region of |η| < 1 and two extended barrels that provide the
coverage of 0.8 < |η| < 1.7) and two end cap in the region of 1.5 < |η| < 3.2.
The barrel calorimeter uses iron as absorber material and scintillating tiles
as active material while the end caps are liquid argon calorimeters.

The general features and physical requirements of hadronic calorimeters
are the following:

• Rapidity coverage: because the main task of the hadronic calorimeters
is the reconstruction of jets and the measurement of the event missing
pt, it has to extend to η = 5 (considering the hadronic modules of the
forward calorimeters of which we will talk below)to allow an efficient
tagging of forward jets associated to the production of heavy Higgs.

• Granularity: a granularity of 0.1 × 0.1 is needed for the decay W →
jet, jet in the region of η < 3. In the region with higher η a granularity
of 0.2 × 0.2 is enough.

• Energy resolution: generally speaking, the HEC has an energy res-
olution worse than the electromagnetic calorimeter one because the
energy deposited has greater fluctuations due both to the effect of the
electromagnetic component of the jet and to the presence of energy
that cannot be detected as excitation, fission energy or as energy lost
by neutrino emission. These factors lead to an energy resolution of

∆E

E
=

50%√
E

⊕ 3% for η < 3.0 for jets. (2.12)

• Total thickness: it has to provide good containment for hadronic show-
ers; the total thickness is 11 interaction lengths at η = 0.

Forward Calorimeter

It is placed in the same wheel as the electromagnetic end cap, in the same
cryostat as the EM calorimeter. It covers the range of 3.1 < |η| < 4.9. It
is a liquid argon calorimeter like the others but it has a different structure
because it has tubular electrodes having a gap to allow liquid argon to flow
inside them. The forward calorimeter is divided in three modules along the z
axis: the first one is electromagnetic, the others are hadronic and they differ
for the material choice (the first one is in copper, the others in tungsten).
The FCAL has a granularity of 0.2 × 0.2 .
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Figure 2.10: Characteristics of the ATLAS calorimeters

2.2.4 Muon spectrometer.

Situated in the external part of ATLAS and arranged in a cylinder of internal
radius of 5 meters and an external one of 10, the muon spectrometer [8] has to
identify the muons produced in the interactions and to measure their energy
and their tracks. It is very important in the study of the H → 4l because we
could have muons among the final products. Its requirements are:

• wide coverage in η: this spectrometer is operating in the region of |η| <
3. high energy and transverse momentum resolution: very important
for the reconstruction of Higgs mass in events with 2 or 4 leptons.

• spatial resolution in the coordinate perpendicular to the plane of the
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Figure 2.11: Muon chamber picture

track of the muon.

• temporal resolution of first level trigger lower than the bunch crossing
interval.

We now briefly schematize his components structure.

Precision chambers: composed by Monitored Drift Tube chambers in the
barrel region and by multi-wire chambers (more precisely, Cathode Strips
Chambers) in the end cap. The MDT have a good spatial resolution while
their temporal one is greater than the bunch crossing interval, so they are a
good instrument for trajectory reconstruction but they have to be coupled
to other instruments who can associate the muon to the event it belongs
to. Instead the CSC have both good spatial and temporal resolution; for
this reason they are used in the inner part of the end cap where the flux of
particles is expected to be great.
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Trigger chambers: they have a greater temporal resolution, so they are
complementary to the Drift chambers. Without the trigger chambers it would
be almost impossible to say to which event a muon belongs. The muon
spectrometer is inside a magnetic field generated by toroidal magnets. In
the region with |η| < 1 the field maximum value is 3.9 T while in the end
cap one (1.4 < |η| < 2.7) it reaches a peak value of 4.1T. In the transition
region the field is made up by a superposition of the two previous ones and
is perpendicular to the muon trajectory.

2.2.5 Data acquisition and trigger system.

Because of its high luminosity and the incredibly high interaction frequency
(40 MHz), it is of fundamental importance that ATLAS has very good sys-
tems for fast signal extraction, for selection of interesting events from the
background and data storing.

The ATLAS acquisition and trigger system works on three levels in cas-
cade and each one operates on the results given by the previous one. Its
schematization is shown in Figure 2.12.

Figure 2.12: Trigger scheme
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The first level trigger (LVL1) elaborates the data that come from the vari-
ous subsystem of ATLAS in order to get a first scan in η and φ. It principally
uses the signals from the trigger chambers of the muon spectrometer. Even
in this first phase there is a search for photons and electrons with high pT ,
at the calorimeter level. The time needed by LVL1 trigger to know whether
to reject or to accept a signal has to be reduced as much as possible; the
requirements are of intervals shorter than 2.5 µs and during this time the
informations are stored in particular memories called pipeline.

By Read Out Drivers and Read Out Buffer, the informations of the ac-
cepted signal go to the LVL2 trigger. The Read Out Buffer stores the data
while the LVL2 takes a decision about the signal: if it is kept, it goes to
the Event Filter. The LVL2 trigger works in a different way with respect to
the LVL1 trigger. While the latter get information from all the detector, the
former uses only the data of the so called Region of Interest indicated by the
LVL1. Upon this RoI the LVL2 makes a finer analysis.

If an event passes these two triggers, its signal goes to the Event Filter
and then is ready to be stored and analyzed.

2.3 The electromagnetic End Cap calorime-

ter (EMEC)

Now we give some features of the electromagnetic end cap, because the study
of its performance will be the main subject of this work.

As the barrel, the end cap calorimeter consists of accordion-shaped lead
absorbers interleaved with electrodes and the gap filled with liquid argon. It
has an external radius of 2077 mm and it is located in the end cap cryostat at
a 3641 mm distance from the interaction points. It covers the pseudorapidity
range 1.375 < |η| < 3.2 for a full thickness ensured between 1.475 and 3.2.
Actually, the EMEC is made up of two coaxial wheels (see Figure 2.13 and
Figure 2.14), with a boundary at η = 2.5.

• The outer wheel contains 768 absorbers and 768 electrodes, while the
inner wheel contains only 256 absorbers and electrodes.

• Each absorber of the inner wheel is aligned with an absorber in the
outer wheel.

• The lead thickness of the absorber is 1.7 mm in the outer wheel and
2.2 in the inner wheel.
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In order to accommodate the accordion geometry in this region, the absorber
plates are arranged radially like the spokes of a bicycle wheel and the accor-
dion waves run parallel to the beam axis.

Figure 2.13: EMEC view. See
the wheel-spoke-like distribution
of the absorber plates.

Figure 2.14: The ratio 1:3 between
inner and outer wheel absorbers.
Only 3 out of 96 absorber for the
outer wheel are drawn.

To ensure a good azimuthal uniformity of the response, the combined
thickness of liquid argon and absorbers crossed by the particles must be
independent of the angle φ. Considering that the liquid argon gap increases
with the radius, it is necessary to vary the height of the absorber waves and
the folding angle as well. For technical reasons, the folding angle must be
kept between 60 and 120 degrees and this limits the ratio of the external to
internal radii of the absorbers to about three. So it is impossible to cover
the pseudorapidity range with only one accordion structure; for this reason
we need two coaxial wheels.

The η and z dependence of the gap width g and of the sampling fraction
is shown in the Figure 2.15. The peak current of the calorimeter can be
expressed as

Ipeak = fsamp/g · vd. (2.13)

For a given constant electric field and thus a constant drift velocity vd, the
dependences of fsamp and g with η almost cancel out, but for a better com-
pensation of these two variables, that is to get a fully uniform response, one
has to vary the electric field, by taking advantage that the drift velocity is a
function of the electric field in the gap, varying as Eb, with b ∼ 0.3, over a
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Figure 2.15: Left : liquid argon gap variation as a function of η and depth z.
Right :Sampling fraction as a function ot η and z in the end cap.

voltage range of 100 V/mm-1.2 kV/mm. Since E depends on the high voltage
V as E = V/g, the expression for the peak current can also be written as

Ipeak ∝ fsamp

g1.3
· V 0.3 (2.14)

To provide an eta-independent current to energy conversion factor one could
use a continuously varying high voltage with η, but in practice a high voltage
varying by steps will be used. Then, the reconstructed energy has to be
corrected for each HV sector.

2.3.1 Absorbers and electrodes

The absorber are made of lead plates cladded with two layers of stainless steel
to ensure the absorber rigidity and smooth surface for high voltage. These
are glued using a 0.15 mm thick glass fibre prepreg adhesive. The absorbers
have nine waves in the outer wheel and six waves in the inner one.

To minimize the contribution of passive material to the constant term
in the energy resolution, stringent tolerances on the lead plate thickness
and liquid argon gap must be imposed: to get a contribution to the c term
of energy resolution not bigger than 0.3%,the distribution of the absorbers
thickness must have a rms lower than 17µm for the outer wheel and 22 µm
for the inner wheel.

The readout electrodes are flexible printed circuit boards folded with the
same geometry as the absorbers. They consist of three layers of copper ,
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Figure 2.16: Liquid argon gap
variation as a function of the ra-
dius.

Figure 2.17: compensating high
voltage in EMEC as a function of
η, in the outer (left) and the inner
(right) wheel; continuously varing
high voltage (open symbols) and
nominal high voltage (closed sym-
bol).

insulated by two Kapton polymide sheets: the external ones provide the high
voltage to the liquid argon gap necessary to collect the charges, the internal
one allow signal collection by capacitive coupling. Resistive ink pads have
been used to minimize the crosstalk effect and to distribute the High Voltage
over the electrodes, that is to minimize the fact that a cell could influence a
neighbour one by inductive effects.

2.3.2 Energy measurement.

In general, the energy reconstructed in all the EM calorimeters can be written
in the following simple way:

E = wglob(wpsEps + Estr + Emid + Eback) (2.15)

where wglob is a global calibration factor and Eps, Estr, Emid and Eback are the
energies measured in a given cluster of cells in the presampler, strip section,
middle and back sampling of the calorimeter. The weight wps is chosen to
minimize the energy resolution. While in the barrel part of the EM we do
not have to apply any weight to the energy deposited in a given longitudinal
compartiment (because the sampling fraction and the liquid argon gap are
constant), in the end cap, where the sampling fraction and the thickness
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Figure 2.18: Structure of the barrel calorimeter gap, absorber and electrodes.
The end cap structure is the same.

of the gap grow with the radius, in theory we should add proper weights.
However, it has been found that with the adopted longitudinal segmentation
the optimum weights are close to unity.

Detailed studies in the case of the barrel have shown that Formula 2.15
has to be modified somewhat to optimize linearity and resolution.

The energy response of the calorimetry is potentially affected by the fol-
lowing effects:

• upstream energy losses;

• φ-modulation and azimuthal gaps between presamplers sectors;

• lateral leakage outside the cluster;

• longitudinal leakage behind the EM calorimeter.

Efficient corrections can be applied for most of these effects, which allow to
preserve a good energy resolution.

Formula (2.15), as we said, is a very general one; in fact, in the end cap
things are slightly different. The presampler is present only in the region
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1.5 < |η| < 1.8 to improve the energy measurement in the barrel-end cap
transition, where the material in front of the calorimeter is the largest and
for the inner wheel the reconstructed energy is reduced to the sum of Emid

and Eback.

2.3.3 Granularity

As we have seen in Table (2.10), the granularity of the EMEC outer wheel is
very similar to the barrel’s one. The inner wheel has instead a much coarser
granularity, because its main goal is not the spatial resolution but coverage
at high η to improve the measurement of the missing energy of the events.

The two coaxial wheels differ also for the number of the samplings: while
the outer wheel has three samplings, the inner wheel does not have the front
one.

Figure 2.19: Total thickness (in radiation length) up to the end of the first,
second and third sampling.

2.4 Test Beam

2.4.1 Test Beam Setup

In the Test Beam of 2004 1/8 of the EMEC inner wheel was placed in a
cryostat with a pre-sampler and two modules of the HEC. The cryostat was
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filled with liquid argon at a temperature of 89.9 K.

Figure 2.20: View of the EMEC module (the small one) and the HEC module.

Figure 2.21: EMEC and HEC modules inside the cryostat.

In Figure 2.22 we can see the complete setup of the best beam with all the
sub-detectors used to provide a trigger signal and to track the beam particles.
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To study different impact points on the calorimeter modules, the cryostat was
mounted on rails that allow it to move vertically and horizontally. The Multi
Wire Proportional Chambers (MWPC) placed along the beam are used to
extract the particles tracks and help in the the determination of the exact
impact point on the detector. To reduce the dead material in front of the

Figure 2.22: Schematics of Test Beam Setup

calorimeter, the cryostat has a circular window of 60 cm diameter with a
reduced wall thickness and the liquid argon in front of the calorimeter was
excluded by a low density foam excluder. The effect of dead material in front
of the calorimeter has been studied by placing absorber plates of different
thickness in front of the cryostat for some runs.

The Test Beam was performed in the H6 beamline at CERN North Area,
using the Super-Proton-Synchrotron (SPS); 450 GeV proton beams are pro-
duced and directed on a common production target for the secondary beams
of the H6 and H8 beamline. Here electrons are separated from pions by their
synchrotron radiation energy loss in a bending magnet. The beam momen-
tum spread of the H6 beam is typically δp/p ∼ 0.3% and so it is negligible if
compared to the resolution of the calorimeter.

2.4.2 Trigger System

The read-out of the detector was triggered with the help of several trigger
counters installed along the beam line as was sketched on Figure 2.22. F1
and F2 are fast scintillation bars with a time resolution of 70 ps. They are
oriented perpendicular to one another and define the transverse size of the
beam.

VM and HOLE are scintillating counters used to veto events in which
particles from the beam halo arrived at the same time as pre-trigger signal.
Moreover, events that occurred too close in time were not recorded to prevent
pile-up phenomena.
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The trigger for muons required in addition a signal in the planar arrays
of scintillation detectors M1 and M2 behind the cryostat and an additional
iron wall.

2.4.3 Read Out Electronics

The charge generated by a ionizing particle that crosses the active region of
the calorimeter is collected by the High Voltage applied between electrode
and absorber. The signal that we get has a triangular shape. Considering
that the mobility of the electrons in the liquid argon is much higher than
that of the ions, the signal is generated by the former.

The ATLAS calorimetry does not have an internal gain, so the measured
signal is directly proportional to the collected charge. This signal has a very
steep rise (it lasts about 1 ns) and a linear decrease of about 450 ns, equal
to the drift time TD of the electron inside the liquid argon gap.

Figure 2.23: Signal before and after the shaping. On the shaped signal a 25
ns sampling has been drawn.

The signal generated in a liquid argon gap is read by the electrodes and
sent to the Summing Board, where the signals of the electrodes belonging to
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the same read-out channel are summed: each Summing Board is linked to
eight electrodes, thus covering ∆φ ∼ 0.2 (two cells in φ).

The Summing Board are grouped in a 2×2 scheme by the Mother Board.
The signal is then sent from the Mother Board to the read out electronics
situated outside the cryostat. In the read-out electronics there is a pre-
amplifier that amplifies the signal and convert the current to voltage. The
amplified signal is then elaborated by a multi-gain shaper CR − RC2 with
a time constant of τ ∼ 13 ns that minimise the signal-noise ratio. Has been
chosen such a shaper to get a shaped signal of zero global area, because that
allows to treat the pile-up phenomena as a noise contribution to the physical
events.

The shaped signal is sampled each 25 ns, that is at the bunch-crossing
frequency of LHC and then it is stored in analogic memories waiting for the
decision taken by the LVL1 trigger. If that signal is considered an interesting
one, it will be amplified using one of the possible gain (LOW, MEDIUM,
HIGH) and five points of its positive part are digitised and stored.

Considering that only 5 samples will be kept, of fundamental importance
will be the methods that allow a precise energy reconstruction. The most im-
portant methods are the Parabola method and the Optimal filtering method ;
they are briefly described in Appendix A. Here we can outline the typical
procedure of energy reconstruction:

• Calculation of the pedestal, that is, the base ADC level for zero input.

• Subtraction of the pedestal from all the signal time samples.

• Calculation of amplitude and time position for each event using either
a cubic interpolation, the parabola method or the optimal filtering
method. We have to remark that the parabola and the cubic inter-
polation are simple methods that do not require the knowledge of the
signal shape but introduce some systematic errors (see Appendix A).

• Conversion of the ADC counts values to nA and GeV using the cali-
bration coefficients (see section 2.4.4).

2.4.4 Electronic calibration

The calibration of the electronic chain ([9], [25]) has the following purposes:

• Obtain a relation between the ADC counts and the ionization current.

• Determine the signal shape and the noise autocorrelation function of
each channel for the signal reconstruction using the method of optimal
filtering.
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• Measure the inter channel cross-talk.

The hardware calibration system allows to inject a known current pulse to
the electrodes of each calibration line. The charge can be injected in only
one calibration line or in all channels at the same time. From the difference
in response of these two modes the inter channel cross-talk can be evaluated.

Detailed analysis of the calibration signal are beyond the goal of this
thesis, so we briefly explained the steps that has to be followed.

• First of all charge pulse of different (but known) size are injected in
every channel. Actually the calibration signals are not directly injected
in the read-out electrodes, contrarily to the physics signal and one
has to take in account of this difference in the calibration pulse shape
reconstruction.

• Finally one has to fit with a cubic polynomial the relation between the
current I and the amplitude of the triangular pulse shape, deduced
from the calibration signal, above the pedestal:

I[nA] =
3
∑

i=0

pi · A[ADCcounts] (2.16)

In general the coefficients p2 and p3 are compatible with zero, while in the p0

one there is the constant offset between the set current and the real injected
current: it is not used to convert the amplitude of phisics signals from ADC
to the corresponding current.



Chapter 3

HV-Energy curve and Signal
Shape

3.1 HV-Energy Curve

The first goal of this work is to test the performance of the EMEC, analyz-
ing the results of the combined test beam (CBT) of autumn 2004. At the
beginning we paid particular attention to the signal shape after the shapers
and to the HV-Energy curve to test its universality, that is, to check if really
it has the same behaviour all over the electromagnetic calorimeter. Specially
this second point has brought interesting results and it could also be impor-
tant for an evaluation of corrections that will have to be made when the HV
nominal value cannot be applied.

For this part we have taken inspiration from the analogous work on the
barrel calorimeter described in [10].

In Figure 3.1 we can see a view of the inner wheel of the EMEC and the
HEC placed behind. We have used runs with the beam that hits the EMEC
in the two points we have circled, belonging to two different HV sectors.

All the runs have almost the same characteristics about the number of
events and the number of samples for each event, with the exception of the
nominal HV value one in the HV sector at higher η (closest to the beam
pipe) of the inner wheel, which has much more events: for this reason we will
usually use this one in our analysis.

3.1.1 Determination of the electron energy peak

The first step is the calculation of the electron energy peak value; if we use
the nominal HV run, the electronic peak we get from the distribution of the
energy of all events will give the real energy of the electrons of the beam.

39
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Figure 3.1: EMEC inner wheel front view, with the HEC behind. The point
A belongs to the HV sector at 2.5 < η < 2.8, the point I to the other
(2.8 < η < 3.2).

The energy of each event has been calculated using a 3 by 3 cells cluster
around the barycenter cell, in order to minimize the influence of the noise
that dominates the output of the cells far from the ones where the beam is
pointed: that is, for each event we have calculated the barycenter cell using
the value of the energy released in each cell, and then we have taken the
eight cells that surround it and then the barycentre of such a cluster. η and
φ barycenters are calculated in S2 in the following way [11]:

ηS2

bar =
∑Nj

j=1

∑Nk

k=1
E2(ηj ,φk)×ηj

ES2

φS2

bar =
∑Nj

j=1

∑Nk

k=1
E2(ηj ,φk)×φk

ES2

(3.1)

We take in account only nine cells in the calculation of the energy because
of the cells dimension: as we said in the EMEC description, their sizes are
quite big (0.1 in η and φ), so it is reasonable to think that all the particle
energy is contained in this cluster. But if we do not impose a cut on the
energy value of the cells, when we perform the calculation of the barycenter,
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there will be plotted even events that release only few MeV in the EMEC,
that is, events relative to pions and muons.

Effectively, without energy cut in the barycenter calculation, we get a
very bad energy spectrum and in the 2-dimensional plot with the EMEC
energy versus the HEC one we can understand the reason (Figure 3.2): our
beam is very polluted with µ and π that we can easily detect. In fact the
muons do not deposit energy in the calorimeters while the pions leave in the
HEC almost the totality of their energy.
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Figure 3.2: No cut applied on energy cell.Left : HEC energy Vs. EMEC
energy. Right : EMEC Energy distribution.

We can see that the electron peak has not a great energy, it is only slightly
greater than 20 GeV , so we were forced to keep the energy cut quite low: to
keep an event there has to be at least a cell with a deposited energy greater
than 1 GeV . Using such a cut (Figure 3.3), things get better but the gaussian
fit of the electron peak has still a great σ.

3.1.2 Cleaning of the beam

Because of such low energy and polluted beam, for any sort of analysis,
becomes of fundamental importance its cleaning by appropriated cuts. The
first two cuts we carried out are the ones on the S2 scintillator and specially
on the Halo scintillator:

• Since the Halo scintillator tells wether the particle is well inside the
cryostat window or not, high Halo values mean that they are not com-
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Figure 3.3: Cut on energy cell: at least one cell of the cluster has to have
more than 1 GeV.Left : HEC energy Vs. EMEC energy. Right : Energy
distribution.

pletely inside that window and so they lose some energy before being
analyzed; for this reason we reject these events.

• The values measured S2 are the energies that each events deposit in
this small scintillator. When the energy deposited is high, this can be
interpretet as the passage of two particles at a time.

Figure 3.4: Left: cut on the sADC s2. Right: cut on the Halo scintillator
values.

These two cuts reduce the number of the events and slightly improve the
spectrum but not yet to an acceptable level (Figure 3.5).
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Figure 3.5: EMEC energy Vs. HEC energy and Energy distribution after
Halo cut.

Finally, to get rid of all pions and muons, we decide to apply a further
and more violent cut: reject all the events with an EMEC released energy
smaller than an HEC released one. More precisely we choose to keep only the
events for which the EMEC energy is greater than 6/5 the HEC energy: the
choice of this factor comes from the fact that it is a good mediation between
the background reduction and the preservation of good statistics. After this
cut we get the spectrum in Figure 3.6: now we can begin our analysis.
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Figure 3.6: EMEC energy Vs. HEC energy and Energy distribution after all
the cuts.
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Mean value Error σ

No cuts 2.12 · 104 2.25 · 102 1.13 · 104

Barycenter cut 2.18 · 104 1.76 · 102 1.02 · 104

Halo cuts 2.21 · 104 2.25 · 102 9.8 · 103

Diagonal cut 2.40 · 104 1.68 · 102 7.3 · 103

Table 3.1: How the mean values and the σ change adding more cuts

3.1.3 Fitting the HV-Energy curve

We apply the same cleaning procedure to all the other runs and for each of
them we fit their peaks using a gaussian fit function and plot the mean values
and the errors that it gives us. Following [10] we try to fit this graph using
a power function of the sort of

E = a ·HV b (3.2)

keeping, for the moment, the runs of the upper side separated from the lower
side ones because they belong to different HV sectors. We begin by fitting
the lower side runs just because their number is greater and we obtain the
values on the plot in Figure 3.7.

If this curve depended only on the property of the liquid argon, we should
get, even for the runs in the upper side, a reasonable fit using the same
exponent b and fitting only factor a, as shown in Figure 3.8. The result is
not bad and we superposed the two graphs making a rescaling of the second:
since a is proportional to the sampling fraction (see [12]) that in the EMEC
strongly depends on the radius r, we multiply each point of Figure 3.8 by
the ratio a/a′.

The result in Figure 3.9 is quite satisfactory but there are facts that lead
us to think that it could be improved if we do not consider the runs at 50 V.
These facts are:

• at such a low HV , the number of events that passes all the cuts applied
on beam instrumentation is very small, so we do not get a satisfactory
statistics.

• we see that while all the points are above the fit, the 50 V one is well
below (see Figure 3.8).

• if we perform the calculation of the ratio between the theoretical value
(a · HV b with a and b from the fit of Figure 3.7) and the measured
value, we should obtain an almost constant value, if our hypothesis of
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Figure 3.7: Fit of lower side runs.
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Figure 3.8: Fit lower side runs
with the same exponent b get from
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Figure 3.9: HV-Energy curve after the rescaling of the upper side runs.

universality was correct. As we see in Figure 3.10, this is true for all
the points with the exception of the 50 V one.

The points at 50 V are not very reliable on account of the very low HV
applied: we decided to remove it from the fit and actually the fit parameters
we get change considerably (Figure 3.11 to Figure 3.13)

Finally we consider only the runs with a HV ≥ 400V , to have runs with
a quite high HV and a greater statistics: we can note that the exponent b
becomes still lower and the point at 2300 V, that in Figure 3.13 was quite
far from the fit, is better fitted (see Figure 3.14 and Figure 3.15).

We can conclude that, with the exception of the run at 50 V, the behaviour
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retical and observed values.
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Figure 3.11: Fit without the 50 V
run.
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Figure 3.12: Ratio between theo-
retical and observed values.
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Figure 3.13: Fit without the 50 V
run.

of the curve corresponds to the one expected, with exponent values very close
to those we can find in [10].
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Figure 3.14: HV-Energy curve
with HV> 400 for point I runs.
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Figure 3.15: HV-Energy curve
keeping only the runs with HV >
400.

Our results L. di Ciaccio results
a b a b

All runs 0.094 0.430 100 GeV beam 8.7 0.44
Without 50V 0.119 0.398 245 Gev beam 13.9 0.37
HV > 400V 0.150 0.366

Table 3.2: Comparison between our values and those found in [10].

3.2 Signal shapes

Studying the signal shapes, their evolution comparing them to the theoretical
shapes is another important introductive study. The function that describes
the theoretical shapes could be found in [17].

Below same shapes with different drift time parameters are drawn ( see
Figure 3.16), in order to observe how the curves change when we modify the
drift time: in fact our goal is to study how they change with different HV
values, that are linked to the drift time by

Tdrift,1

Tdrift,2
=
(

HV1

HV2

)b

(3.3)

The CBT signals in Figure 3.16 are in fact a mean on the 18500 events of
the shape of the single events: we accumulated the values of the single bins
and then we have normalized them dividing by the number of events to get a
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Figure 3.16: Left : signal shapes obtained from the CTB data. The fluctua-
tion in the 50 HV curve are essentially due to a normalization effect: for this
run the ratio between signal and noise is worse and normalizing the curve
this fact is amplified Right : theoretical signal shapes.

more uniform signal. Anyway if we compare them to the theoretical signals
it is easy to note the substantial differences, even only from a qualitative
point of view: the undershoot is not flat and there is not a steep rise after it,
it is very smooth and it is not well distinguished from the undershoot [13].
Moreover, we observe that the relation between drift time and HV is not
exactly respected: if we consider the runs at 1800V and at 100V, for relation
3.3 we should have drift time differences of the order of 20%. Instead, looking
at Figure 3.17, we see effectively a correlation between those two variables
but the time difference we obtained for the same runs is the 10%.

We have made some hypotheses about the strange behaviour of the un-
dershoot and about the fact that there is not a perfect correlation between
drift time and high voltage.

• First we have thought about recombination effects of the charges pro-
duced in the liquid argon: these effects could make smoother the rise
to zero of the signal. However, as can we see in [14], they influence
only the 5% of the produced charge and the proper time of this effect
is of the order of milliseconds while the sampling is effectuated every
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Figure 3.18: Time of second passage of the signal shape across zero (drift
time crude estimate) Vs. peak energy

25 nanoseconds.

• Other hypotheses could be the pollution of the liquid argon and the
non-uniformity of the absorber thickness (and so of the liquid argon
gap). But levels of liquid argon pollution in the test beam have been
kept below the value at which they could influence the signal.

Then the most probable explication becomes the accordion geometry of the
electrodes and absorbers. In the regions of the folding angles the distance
between the two absorbers is greater so the particles are exposed to a weaker
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electric field. The ionization curve in Figure 2.23, that in principle should
be triangular, will be an interpolation of triangular curves with different
drift times and different peak amplitudes: this fact will give a resulting
exponential-like curve that after the shaping will have a not flat undershoot
(see Figure 3.19 and Figure 3.20).
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Figure 3.19: Left : Theoretical ionization curve that we would find if the
distance between the electrods were constant. Right : Signal shape after
CR−RC2 shaping.
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Figure 3.20: Superposition of ionization curves that correspond to different
distance between electrodes. After the RC − CR2 shaping we obtain the
actual signals of Figure 3.16 on the left.

In the EM barrel, which is the part of the calorimeter that should per-
form the more precise measures, this effect has been studied and taken into
account. For the EMEC a similar study has not been performed yet, so we
give only this qualitative explication.



Chapter 4

Noise

In this chapter we will do a brief analysis of the EMEC electronic noise to
quantify how much it can influence the measurements of physical events. To
do this we have used one r-tuple containing only randoms events.

The first goal was to check if the electronic noise was purely gaussian,
that is, characterized only by statistical fluctuations, or if it had particular
behaviours; we also compared the noise with that of older test beam data.

4.1 Noise measurement

If the noise was purely gaussian, we should find out that the RMS of the
distribution of the means of the 32 sample we had for each event is equal
to the mean of the distribution of the RMS for each event, divided by the
square root of the number of samples [22].

∑i=N
i=1 (yi − y)2

√
N

=

∑i=N
i=1

(

∑j=32
j=1 (xi,j − xi)

2

)

/
√

32

N
with yi =

j=32
∑

j=0

xj,i (4.1)

For each cell of layer 1 we obtained the values of RMS plotted in Figure 4.1,
keeping in mind that the 0 in the η axis correspond to the η physical value
of 2.5 and 7 correspond to 3.2.

From Figure 4.1 we can immediately see some particular characteristics:

• In the up-left plot (that display the means of the RMS distributions)
we see that the noise values rise with η, that is, the noise grows when
we approach the beam axis.

• In the up-left plot the cell with φ = 25, 26 have a noise much bigger
than the other cells’ one.

51
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Figure 4.1: Up-left : RMS of the distribution of the means over 32 sam-
ples. Up-right : means of the distribution of the RMS calculated event by
event. Down-left : same values as up-right but divided by

√
32. Down-right :

difference between Up− left and down− left.

• The difference we are interested in is especially marked in four cells,
those with η = 0, 1 and φ = 25, 26

The η variation, anyway, is not too worrying, is very smooth and not too
much accentuated. Instead the φ variation deserves more attention: it is an
abrupt change and it is limited to only two cells lines. We have to develop
further analysis to understand this strange pattern that differs from the gaus-
sian expected one. To check this strange behaviour of the right side of our
detector, we had repeated this analysis for the other layer and actually we
get the same pattern and even with an other run the plot does not change,
indicating that this feature is constantly present.

The origin of the high noise in the row with φ = 25, 26 could be due to
some electronic device that does not work properly, as summing board, HV
board or mother board. To test this hypothesis we looked at some photos
that have been taken of the inner wheel during the test beam, photos that
shows how the different devices were arranged on the absorbers. In particular
we can see from the Figure 4.2 that each summing board covers a region of
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two cells in φ, with 4 summing board to cover all the φ coordinate: that
means that the φ = 25, 26 lines are not served by the same summing board
and this decreases the possibility of a high RMS due to such a device that
does not work well. We have also noted that even the HV boards have

Figure 4.2: Photos of EMEC summing board.

the same disposition as the summing boards, while there is only one mother
board to cover these lines. Only the latter could be a possible origin of this
strange pattern.

However we should keep in mind that the amplitude of the effect is of the
order of 1 ADC count that corresponds to a reconstructed energy of ∼ 25
MeV . Furthermore we did not have the possibility to make direct measures
on the test beam setup.
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Figure 4.3: Photos of EMEC mother board.

4.2 Search for a low frequency noise.

The origin of this pattern could be the presence of a low frequency noise that
affects the distribution of the averages (and increase it) but not that of the
RMS. To test it we can make the same plot as in Figure 4.1 but using only
16 or 8 samples instead of 32: in this way the difference between the two
values have to change if actually there is a low frequency noise.

Effectively there is such an increase and it seems common to all the layer.
A way to show these oscillating noises and to calculate their frequency is
plotting the average of the 32 samples versus the signal slope (the latter
obtained by linear regression). To obtain the noise frequency we can use the
following Formula

A = A0 sin(ωt)
dA
dT

= A0ωcos(ωt)

}

⇒ ω =
max(dA

dT
) −min(dA

dT
)

max(A) −min(A)
(4.2)

In [15], the same work has been done for the hadronic end cap (HEC):
there such phenomena are much bigger, of the order of 300 ADC, while
in the EMEC these phenomena should have, if there are any, an ampli-
tude ∼ 1ADC count. Compared to the enormous oscillations of the HEC
(∼ 300ADC counts) the EMEC ones are maybe negligible but they are of
the same order of the difference between the RMS of the means distribution
and the mean of the RMS one, so this could be the answer to our problem.
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Figure 4.4: Same plots as Figure 4.1 but using only 16 samples for each event.

Unfortunately, for the EMEC we did not find any structure similar to that
of Figure 4.6 (on the left): the distribution was uniform and not concentrated
on a circumference, even for the cell with a high noise.

One other possible origin of this noise could be a correlation between the
HEC and the EMEC: we want to test if the hadronic calorimeter, with its
oscillating noise, could influence the EMEC behaviour. For this reason we
decided to plot the energy (in ADC counts) of one of the strange EMEC cells
Vs. the energy of a HEC cells with an oscillating noise (Figure 4.7).

Even if there seems to be a slight correlation (high HEC values correspond
to lower EMEC values), the correlation coefficient ρ is very small: even for
the cell φ = 25 η = 1 we get the value ρ = −0.17, so the visual impression
has not to be followed.

4.3 Correlation between EMEC cells.

We performed one other test to look for eventual cross-talk phenomena plot-
ting the means of the samples sums of two neighbour cells and observe if
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Figure 4.5: Same plots as Figure 4.1 but using only 8 samples for each event.

Figure 4.6: Left: oscillation in the Hec. We plot the slope of the signal versus
the ADC counts output. The piedestal has not been substracted. Right: in
the EMEC cell we did not find any oscillating noise, we obtained a completely
uniform distribution.

the

(RMS(1 + 2))2 = (RMS(1))2 + (RMS(2))2 (4.3)
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Figure 4.7: EMEC-HEC correlation: apparently there is a slight anticorrela-
tion, but the ρ is too small for a real correlation.

as we should expect from a gaussian noise; that is, we looked for some cor-
relations between the EMEC cells. We took a cell and made this work
with the eight neighbours; for the cells in the up left region we note no
particular discrepancy, that it means that the cross-talk and other disturb-
ing effects are almost negligible (the difference between (RMS(1 + 2))2 =
(RMS(1))2 + (RMS(2))2 is below the 0.5 ADC counts). Instead, in the
right side, we have great differences especially between two cells with a high
RMS value that means a great noise-correlation between them. Actually, if
we make the same plot as in Figure 4.7 but between two EMEC cells, we see
a very strong correlation (Figure 4.8). In fact we discovered that all the cells
are correlated, not only the ones in the columns with φ = 25, 26: the whole
calorimeter underwent some fluctuations, in the φ < 25 region less strongly
(as we can see from the slope of the plots) but in a way equal to the cells of
columns 25 and 26.

Cell 1 Cell 2 ρ slope a
φ1 η1 φ2 η2

25 1 26 1 0.989 0.89
25 3 21 6 0.72 0.12
21 3 22 3 0.75 0.11
22 2 27 2 0.86 1.61

Table 4.1: As we said, cells with high noise are more correlated than the
other. It is interesting to note that even cells with different η values are
correlated, confirming the hypothesis that the fluctuation are common to
the whole calorimeter.
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Figure 4.8: EMEC cells correlation. Left : the correlation between cells with
high noise is strong and the the events are placed on a line with slope 0.89.
Right : the correlation between these cells is evident but less accentuated and
the slope formed by the events is much smaller (0.124).

4.4 Comparison between Test Beam 2004 and

other Tests Beam.

We make now a brief comparison between the new Test Beam and an old
one (series module H6 of the 2002). The RMS of the old test beam we have
analyzed are actually the means of the RMS distribution but with only a
sample each event, so we made the same things with the new one.
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Figure 4.9: Layer 1. Left : noise of new TB. Middle:noise of the old TB.
Left :absolute difference between old an new TB noise.
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Figure 4.10: Layer 2. Left : noise of new TB. Middle:noise of the old TB.
Left :absolute difference between old an new TB noise.

Remarks:

• In both the tests beam the noise was measured in high gain.

• The noise, in the layer 1, has the same order of magnitude but in the old
test beam it is more uniform and smaller especially for high η values.

• The two test beam have noise pattern common to the two layer, but
while in the old the layer two has a noise greater than that of the layer
1 (at least 2 ADC counts), in the new one the amplitude is almost the
same.
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Chapter 5

HV corrections

In this chapter we want to analyze the High Voltage corrections that should
be performed to the electromagnetic end cap calorimeter data. We have stud-
ied only the η-Energy corrections because they are those that strongly affect
the uniformity of the response. The φ corrections influence the uniformity
at a 1% level: a complete study can be found in [20].

5.1 Energy-η corrections

The most important one concerns the η response, because in the EMEC the
liquid argon gap decreases with η and to keep a response independent from
η we should use a continuously varying potential. For technical reasons, the
high voltage is set by steps in nine η sector all over the EMEC, seven for
the outer wheel and two for the inner wheel. However, this division leaves
an η-dependence that should be taken in account and corrected ([16], [12]) .
This is done weighting each EMEC cell depending on its η position taken by
the center and its HV sector (l) using the following Formula

EHV −corr
cell (η, l) = Ecell · βl

1 + αl · (η − ηcenter
l )

(5.1)

Let us briefly explain the meaning of the parameters:

• β is a scale factor whose value is in theory close to 1.

• The value of α can be calculated approximately in the following way:
we know that the calorimeter response could be written as

E ∝ fsamp

gb+1
U b. (5.2)

61
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Figure 5.1: Left: schematic fronview of the inner wheel. Right: schematic
sideview.

In each HV sector the high voltage is constant, that is ∆U = 0, so

∆E

E
∼ ∆fsamp

fsamp

− (b + 1)
∆g

g
(5.3)

where, as usual, fsamp is the sampling fraction and b is the exponent of
the power function that fits the HV-Energy curve we have studied in
Chapter 3.

We have now to express the gap g as a function of η: as shown in Figure
5.1

g ∼ rφ (5.4)

r ∼ Rθ (5.5)

so we get the following results

∆g

g
∼ ∆r

r
(5.6)

∆r

r
∼ ∆θ

θ
(5.7)

Keeping in mind the pseudorapidity definition

η = −ln|tan(θ/2)| ∼ −ln|θ/2| (5.8)

and the relation 5.6 and 5.7, we obtain

∆η ∼ −∆θ

θ
∼ −∆r

r
∼ −∆g

g
(5.9)
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In [17] we can see that with a simple calculation we can get

∆fsamp

fsamp

∼ (1 − fsamp)
∆g

g
(5.10)

If we insert 5.9 and 5.10 in the expression 5.3, we have the energy
variation of each HV sector that we can express, at the first order, as

∆E

E
∼ ∆fsamp

fsamp

− (b+ 1)
∆g

g
∼ (b + fsamp)∆η (5.11)

So, if we compare it with 5.1, we deduce that at the first order α ∼
b + fsamp. The value of b being close to 0.4 (see Chapter 3) and the
value of fsamp between 0.1 and 0.2, our α should fall in the interval [0.4,
0.7].

We have begun our analysis with a Y scan at X=0, that is, a vertical scan
along the η coordinate in the middle of the detector.

Figure 5.2: EMEC Inner Wheel frontview. We have enlightened the Y-scans
at different X performed.
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5.1.1 Results of Scans Performed

We used the r-tuple [1359..1376] that are referred to a wide beam of 120 GeV
positrons; wide means that the beam hits more than one cell at the time.
The energy in these r-tuple has been reconstructed using the cubic fit method
and we have calculated the energy of each event using a 3 by 3 cells cluster
centered on the barycenter cell as we did in the HV scan. As we already said
in Chapter 3 we can state that all the energy of the event is included in such
a cluster on account of the cells width (∆ η0.1 × ∆φ0.1). In Figure 5.3 we
have plotted the mean of the η values distribution of the cluster barycenter
versus the calculated energy. Being a wide beam, the energy distribution has
two or more peaks according to the number of cells in η that have played the
role of barycenter.

Watching the Energy vs η plot in fig(5.3) we can immediately see two
surprising characteristics: first of all the energy range is very wide, the energy
varying by almost 40 %, especially if we compare it to the Combined Test
Beam of 2002, where the variation was within the 20% (see [20]). Then, if we
consider only Formula 5.1, the point at η = 2.65 should remain unchanged (it
is the center of one HV sector), and so it should have an energy of 120 GeV,
the scale factor being close to 1. There are maybe some not well working
cells or the problem is in the energy reconstruction.

To test the first hypothesis we made the same work with other scans:
one Y scan at X=-60 (narrow beam of 60 GeV electrons) (see Figure 5.3)
and runs with the beam on the so called standard points (see Figure 5.2):
this way we covered almost all the φ and η ranges reducing the risk that our
results could be biased by dead cells. The resulting plots are in Figure 5.5.
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Figure 5.3: Y-scan at X=0 of a 120
GeV wide electron beam.
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Figure 5.4: Y-scan at X=-60 of a
120 GeV narrow electron beam.

In Figure 5.5 we perceive a slight φ asymmetry that we have to analyze
but, anyway, it does not change considerably the width of the energy range
(our main problem) because it only shifts it. The same behaviour in all the
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Figure 5.5: Standard points scan.
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Figure 5.6: Overlapping of the pre-
vious three plots.

Kind of scan R-tuple numbers Energy Beam size

Y scan at X=0 [1359..1376] 120 GeV wide
Y scan at X=-60 [1659..1681] 120 GeV narrow

Std points: A,B,C,E.. [2331..2410] 193 GeV wide

Table 5.1: Characteristics of the analyzed runs

runs tested becomes manifest if we superimpose the three previous plots as
we do in Figure 5.6.

5.1.2 First corrections

If we try to correct these plots using the Formula 5.1 with reasonable pa-
rameters (α = 0.5 and β = 1), we do not reach a constant response in η: the
slopes of the points in both the HV sectors decrease but not enough, we are
far from getting the correct energy value from all the detector, especially in
the low-η HV sector (Figure 5.7).

To obtain it we should use an unphysical α value. Moreover, in the
same sector, there is a scale problem to understand. Having excluded the
influence of dead cells in this result, the hypothesis of problems in the energy
reconstruction becomes predominant.

At the time there was no OF reconstruction: this was the reason we
used the cubic fit reconstruction. To test the effect on the response of the
reconstruction method, we did the same analysis using some crude optimal
filterings: we used 5 samples with the constraint that the sum of the five
coefficients that weight the samples be equal to one. The OF we used are:

• [0, 0, 1, 0, 0]: We simply give all the information to the third sample.
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Figure 5.7: HV correction using β = 1 and α = 0.5. We do not get a constant
response.

• [0.2, 0.2, 0.2, 0.2, 0.2]: we average the signal over the five samples.

• [0.02, 0.25, 0.38, 0.25, 0.1]: we weight the coefficient for a signal in the
high η HV sector.

• [0.01, 0.19, 0.34, 0.29, 0.17]: we weight the coefficient for a signal in the
low η HV sector.

To calculate the energy we have used the same 3 by 3 cells cluster.

In these optimal filterings, the problem of the scale factor has been ne-
glected: so, in the plots in Figure 5.8 no attention has to be paid to the
absolute energy value but only to the slope of the points. For simplicity we
have used only some runs of the Y scan at X=-60, the narrow beam one.

We note, on Figure 5.8, that the slopes we get using these crude optimal
filterings are in general less steep than the one of the cubic fit: the situa-
tion improves specially for the HV sector closest to the beam pipe, while
the change in the other HV sector is not too much significant. To have a
quantitative answer to our hypothesis - that is, if there is a problem in the
energy reconstruction - we calculate which value α has to assume to give us
an η uniform response, in the two HV sector separately: the values in Table
n.5.2 show us that actually things get better in the region near the beam pipe
and in some case, in the finest filterings, are compatible with the expected α
values.
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Figure 5.8: Inner wheel response comparing the cubic fit and some crude
optimal filterings. We see that for some of them the response in the second
HV sector is less steep.

α values
Coeff. values 2.5 < η < 2.8 2.8 < η < 3.2

Cubic fit 1.2 0.8
1 0.5

Crude optimal 1.1 0.5
filterings 1.3 0.7

1.1 0.5

Table 5.2: α values needed to get an uniforme response.

Resolution using different method of energy reconstruction.

We must check how resolution changes when we modify the way by which the
energy is reconstructed; if we had a great loss in resolution, any improvement
in the α value would not be meaningful. For this reason we have calculated,
for all our crude optimal filterings, the ratio between the σ of the energy
distibution and the mean value of the same distibution and then we plotted
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these results in function of η.
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Figure 5.9: Plot to show that using these crude optimal filterings we do
not degrade significantly the energy resolution. Moreover, the HV correction
itself does not worse resolution.

Looking at Figure 5.9 it is evident that the resolution of the cubic fit is
still better all over the EMEC inner wheel, much better for low-η values and
only slightly for high η. Anyway we see that in any case, the HV correction
does not worsen the resolution.

In september 2005 the new version of the OFC energy reconstruction was
ready but the situation did not improve. The remaining explanation for such
a wide energy range was a wrong or missing calibration: what supported
this hypothesis was the fact that even in the TB of 2002 we had a similar
situation (see Figure 5.10). Let us explain the meaning of this figure:

• the black points are the old TB energies without calibration. The ADC
counts response has been directly plotted, without any transformation
to nA. Actually the Y-axis of this histogram displays the relative re-
sponse, because we are interested only in the energy range scale.

• the red points are the energies of the same runs, but obtained using
the calibration performed for that TB.
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Figure 5.10: Reconstructed energy in function of η in the test beam 2002

• the green points are the energies of some runs of the 2004 TB that we
have used above

Actually we see that the Old TB points without calibration covered an energy
range very similar to the one that we have found before, while using the
calibration (and before any sort of corrections), the range was reduced at
least to the half.

Corrections using the new calibration.

Using the new calibration [19], the situation gets immediately better: we
calculated the energies for the same runs as before, using the same kind of
cluster and we can see that the energy ranges now are within 20% In Figure
5.11 and Figure 5.12 we have displayed in black the uncorrected energies and
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in red the corrected ones for 2 Y-scan, the first using a 120 GeV wide beam
in the middle of the detector and the second from a 120 GeV narrow beam
at X=-60 mm.
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Figure 5.11: Y-scan at X=0 of a
120 GeV wide electron beam.
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Figure 5.12: Y-scan at X=-60 of a
120 GeV narrow electron beam.

This first correction has been performed using α = 0.5 for both the HV
sectors and ignoring, for the moment, the β normalisation factor. We can
say that the new calibration works globally well, all the calculated energies
are within 20% and after a correction with an α value that has physical sense
the range is within 4%. Anyway we have to remark that:

• The runs that have their barycenter in the 2.5 < η < 2.6 cell have
energies smaller than those we expected, even before correction. This
can be explained reminding that here we are on the very top of the
inner wheel, so for these runs it is not possible to have a nine cells
cluster and consequently we have an energy leak.

• The calculated energies in the 2.9 < η < 3.0 cell do not follow exactly
the slope of the other cells of the same HV sector, but this could be
due to residual cluster level corrections.

We have then performed other scans to confirm the first impression. In Figure
5.13 we have plotted the energies of a 193 GeV wide scan in the middle of
the detector. In red there are the energies corrected with α = 0.5 for all
the sectors while the points in green represent the corrected energies using
α = 0.55 for the first sector (2.5 < η < 2.8) and α = 0.45 for the second.

Actually we see that the points follow the same trend of the previous
scans, with the same problem for the cell at the top of the detector and for
the 2.9 < η < 3.0 one. Moreover, changing the correction factor α by 10%
does not bring dramatic differences in the corrected energies. Anyway, we
will have to find the value that minimize the energy range.
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Figure 5.13: Y-scan at X=0 of a
193 GeV wide electron beam.
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Figure 5.14: Beam of 193 GeV
electrons on the Std. Points.

For the runs in which the beam is pointed towards the standard points
the situation is a little bit worrying. As we can see in Figure 5.14, the
runs with the beam in the Standard Points I and J are well below what
expected, their energies are smaller than those that have smaller η. This
strange behaviour of the Standard points I and J becomes more evident if we
overlap all the previous plots dividing the calculated energies by the beam
ones (Figure 5.15). Only these two runs do not follow the common trend.
One possible explanation could be a not perfect calibration for those cells
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Figure 5.15: Overlapping of previous scans before correction (on the Left)
and after correction (on the Right).

because in Figure 5.6 they were perfectly aligned with the others.
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Another explanation could be the gain: actually we see in [19] that while
for high gain the calibration is good, for medium gain there are some channels
not too well calibrated. Considering the high energy that the runs in the
standard point have, there is the possibility that the points I and J correspond
to some strange channels. To test this hypothesis, we analyzed a Y-scan at
X=-120 with a beam energy of 60 GeV (in this scan we find the same cell
of Std Point I): for such an energy the gain chosen is the high one, so the
previous problem should disappear. In Figure 5.16) we clearly see that the
energy problem is common to all the runs of the scan: the energy we measured
is smaller than what expected by about the 20%. Moreover, the normalized
energy of the cell with 3.0 < η < 3.1 has the same value of the normalized
energy of standard point I, so definitely it is not a question of gain.

We decided to see if using the calibration of the TB 2002, such a problem
could disappear: the electronic and the set-up of the two tests-beam are
almost the same, so in principle we should find the same values for the two
calibrations.

Correction using 2002 calibration.

Indeed, using the calibration of 2002, our problem disappears and the values
of the measured energies in the cells of the Y-scan at X=-120 overlap very
well the values of the other scans (see Figure 5.16). In Figure 5.17 we have
superimposed now the TProfile of the three Y-scans at X=0, X=-60 and
X=-120 getting a satisfactory uniform response: using the calibration of the
old TB there seems not to have cells that behave in particular strange way.
Moreover we can find the same behaviour in cell 2.9 < η < 3.0 for all the three
scans, and the differences in energy are very small. To have the maximum
of the η coverage and considering the common behaviour of these scans, we
decided to put all their data in a common TProfile histogram from which
then we extracted the values of α and β.

As a last test, before performing the calculations of the factors α and
β, we analyzed a vertical scan at X=120, that is in a symmetric place with
respect to the scan that with the new calibration has given some problem.
It is the region of the standard point J. Superimposing its TProfile to the
common one that we will use to get α and β, we see that uniformity is
preserved even in the right side of the detector.

Calculation of α and β

The best values of α for the first and the second HV sector, that is, the
values that make the response the most uniform possible, are the ones who
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Figure 5.16: In purple are the scan at X=-120 at 60 GeV with the new
calibration. The blue points belong to the same scan but 2002 calibration
has been used (as for the other points).

Figure 5.17: We have overlapped the TProfile of three scans: the green is a
193 GeV scan at X=0, the red a 60 GeV scan at X=-120 and the black a 120
GeV one at X=-60. All over the η range differences are within the 3%.

minimize the distribution of the bin values of the TProfile. Varying the α



74 CHAPTER 5. HV CORRECTIONS

eta
2.5 2.6 2.7 2.8 2.9 3 3.1

co
Entries  160566
Mean    2.812
Mean y   1.265

eta
2.5 2.6 2.7 2.8 2.9 3 3.1

E
_c

al
c/

E
_b

ea
m

1.1

1.15

1.2

1.25

1.3

1.35

1.4

co
Entries  160566
Mean    2.812
Mean y   1.265

Figure 5.18: We inserted in a single istogram all the data of the three scans
at X=0, -60, -120.
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Figure 5.19: Common TProfile and (in red) the scan at X=+120. The
behaviour is the same with the exception of cell 2.9 < η < 3.0.

values, we see which of them minimise the σ of the bin values, weighting each
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Kind of scan R-tuple number Energy Beam size

Y-scan at X=-60 [1659..1681] 120 GeV Narrow
Y-scan at X=0 [2436..2462] 193 GeV Wide

Y-scan at X=-120 [2834..2844] 60 GeV Wide
Y-scan at X=120 [2463..2489] 193 GeV Wide

Table 5.3: List of the scans used with the calibration ramps of TB 2002. The
common TProfile has been created using the first three scans.

bin by the number of events that fall in each bin

σtot = σ1 · n1

ntot
+ σ2 · n2

ntot
. n1,2 are the number of bins for each HV sector.

σ1 =
∑

(E−Ei)
2√

Nent, i

with i that runs over the first HV sector bins.

(5.12)
The two HV sectors are not completely independent because the events

whose clusters have barycenters in the middle cells have energy correction
affected by both the α: an event with a cluster barycenter at η = 2.85 will
have the energy collected by the right cells of the cluster augmented by the
correction of α2 while the energy collected by the other cells is lowered by
the α1 correction (see Figure 5.20).

Figure 5.20: How the two α values act on the clusters that have barycenter
in the middle cells.

The more the barycenter is close to the border of the two HV sector (in
our case ηbar → 2.8+, the lower will be the energy of the event, because it
has lot of energy in the first sector. Contrarily, if ηbar → 2.9− almost all the
energy will be in the second HV sector.

In these middle cells the effect of the combination of the two α is summed
to second order corrections (common to all the cell) and they are responsible
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of the remaining non-uniformity. These second order corrections will be
analyzed in section 5.1.3.

The stategy we have followed to get the values of α was to fix α1 and
vary α2. Once we found a minimum in the σ of the points distribution, we
fixed α2 and varied α till we converged to a point in the α1 − α2 plane. As

Figure 5.21: Left : path followed on the α1 −α2 plane to find the values that
minimize the response range. Right : How the σ changes along one of the
piece of the path.

we can see in Figure 5.21, the σ of the points distribution is minimized by
the couple of values in Table 5.4: Anyway, Figure 5.21 shows clearly that the

α1 0.55
α2 0.45

Table 5.4: The couple of α that minimize the points distributions.

minimum is very flat: choosing α values in a 0.1 radius neighbour of αbest

the response does not change in a significant way the σ. This fact can also
be seen in Figure 5.22 and Figure 5.23, where plots obtained with different
α values are superimposed.

5.1.3 Cluster level correction

We can perform other corrections at a cluster level. Actually, the cells of
our calorimeter have a limited size, so the energy of the events with the
barycenter not at the very middle of the central cell is worse contained in
such a cluster rather than the energy of an EM shower with the barycenter
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Figure 5.22: Black : α1=0.55, α2 = 0.4. Red :α1=0.5, α2 = 0.35.
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Figure 5.23: Black : α1=0.55, α2 = 0.4. Red :α1=0.5, α2 = 0.35.
Green:α1=0.6, α2 = 0.45.

in the middle of the central cell. In principle we should expect a parabolic
behaviour [20] within each cell, centered in the middle of the cell.

In Figure 5.24 it was already clear that the cluster level corrections, under
the form of parabolic corrections, do not display the same behaviour for all
the cells: other effects as the combination of the two α and the impossibility of
having a 9 cells cluster (in the 2.5 < η < 2.6), bring variation in the energy
response of the same order as the cluster corrections. Correct parabolic
corrections can be implemented for the outer wheel of the EMEC [20](that
has finer granularity) while in the inner wheel there are the same problems
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Figure 5.24: Energy response after α and β corrections. The response is
inside a ±2% interval over almost all the η-range.

present the TB of 2002.

Figure 5.25: Energy response after first order corrections in the TB 2002:
the shape is the same as the 2004 one.

Anyway we tried to fit the energy response using the following Formula

F (η) = C0(1 + C1(η − ηc)
2) (5.13)
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leaving the center of the parabola as a parameter without fixing it to the cell
center. What we get are the fit in Figure 5.26.
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Figure 5.26: Parabolic fit. As in [20], the parabolic fit is pretty good for only
two cells.

With the exception of some cells, we are far from the expected parabolic
behaviour; in Figure 5.25 we can appreciate that this not-ideal shape of the
energy response was common even in the TB of 2002.

The only way to obtain an uniform response is to absorb all the origins
of non-uniformity in a polynomial correction, because analyzing them sep-
arately will not bring many advantages. Fitting the shape of the energy
response with a third degree polynomial we get a satisfactory fit (Figure
5.27).

Using these coefficients we should get the uniform response that we did
not find using the parabolic fit. We put them in the calculation of the energy
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Figure 5.27: Third degree polynomial fit by which we absorb all second order
corrections.

of each vertical scan: we have to get almost flat response for all the three
scans that made up the TProfile from which we have extracted all the values
of the corrections, and even for the vertical scan at X=120 of which we have
shown the same η-behaviour.

To test it we have calculated the σ of the TProfile points distribution
of every analyzed scan: in principle we should obtain a common σ but con-
sidering the great number of runs and events of the X=-60 vertical scan,
the common TProfile used is strongly correlated to that of this scan. So we
expect that the distributions of the difference between the corrected energy
values and the theoretical flat response will not be centered on zero for the
other scans.
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Figure 5.28: Left : corrected response for the X=-60 scan. Right : distribution
of the differences between the theoretical flat response and the calculated one.
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Figure 5.29: Left : corrected response for the X=0 scan. Right : distribution
of the differences between the theoretical flat response and the calculated
one.

5.2 Summary and conclusions for Energy-η

response.

We briefly summarize the various steps that achieved in this long chapter.

• Using the calibration ramps performed for the test beam of 2004 we
obtained an energy range too wide: to have a uniform response in η we
were obliged to use unphysical α value.

• With the 2005 calibration things were better but remained one region
of the detector where the reconstructed energy was smaller than what
expected.

• Waiting for an update for this new calibration we used the well tested
calibration ramps of test beam 2002, considering that the test beam
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Figure 5.30: Left : corrected response for the X=-120 scan. Right : distribu-
tion of the differences between the theoretical flat response and the calculated
one.
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Figure 5.31: Left : corrected response for the X=+120 scan. Right : distribu-
tion of the differences between the theoretical flat response and the calculated
one.

setup and the electronics were the same.

• We obtained common energy response for different Y-scans at different
X positions and energies: so we created a common TProfile histogram
from which extract α values averaged all over the detector X position.

• Using the values of Table 5.4 our energy response is within an interval
of ±2%.

• About all second order corrections, we have absorbed them in a third
degree polynomial fit. The energy response after all corrections is
within ±1%.



Chapter 6

Spatial Resolution

In this chapter we will focus our attention on the spatial resolution of the
Inner Wheel of the EMEC, in order to calculate with which precision our
calorimeter can detect the position where the particles hit it. About φ-
resolution, the results of this chapter will be used by the Cracow ATLAS
group for a luminosity study using a pair of low energy electrons produced
from an hadronic interaction by the process in Figure 6. The electron pairs

Figure 6.1: Feynman diagram for the calculation of luminosity using a
electron-positron pair produced at high η.

will be produced at a φ-angle of 180 degrees, so a very good knowledge of φ
resolution (specially at low energies) is necessary to to get the correct value
of luminosity.

The use of calorimeter φ-position measurement is illustrated in [7].

83
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6.1 Global φ-resolution

During the Test Beam of 2004 there were 6 Beam Profile Chambers (BPC)
all along the the beam [21], before the cryostat. These chambers give the
beam positions in the X − Y plane, event by event. They are high precision

Figure 6.2: BPCs setup during the Combined Test Beam of 2004.

chambers that should have a very good intrinsic resolution better than the
detector one, in order to not influence it. During the Test Beam the position
of the BPC has not been changed; it was the detector that was moved to test
all its cells.

BPC # position

0 X = 0
0 Y = 31
1 X = 522
1 Y = 553
2 X = 11076
2 Y = 11154
3 X = 11219
3 Y = 11294
4 X = 27645
4 Y = 27676
5 X = 27745
5 Y = 27776

Table 6.1: Relative position of the BPCs (in mm).

To obtain the detector resolution, we made a 2-dimensional plot with
the values of the X coordinate of the BPCs versus the φ coordinate of the
barycentre of the usual 3× 3 cells cluster used to calculate the beam energy.
From this plot we see the correlation between these two variables.
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We have used runs with a beam pointed in the center of the detector,
to have X and φ in the same direction: so rtuple from Y-scan at X=0 and
rtuple with the beam directed toward the standard points B and F. If we chose
edge cells, φ and X would not have the same direction and the correlation
between them would not be simple, complicating the analysis. To resolve
this problem one could in principle perform a rotation of the axis using a
linear parametrization of the coordinates.

From the 2-dimensional histogram, we have produced a TProfile his-
togram to get the parameters of the first degree polynomial that fits the
points. Then, by these parameter, we filled an histogram with the differ-
ences between the measured φ value and the relative one given by the fit.

Figure 6.3: Steps to get the φ-resolution: Left : BPC position versus φ-
coordinate of the cluster barycenter. Middle: correlation parameters extrac-
tion. Right : Distribution of the difference between the measured φ value and
the fitted one. Its σ it is the global φ-resolution.

In all our analysis we have considered for each run only one cell of the
dimension of 0.1 × 0.1 in η and φ

6.1.1 Global φ-resolution Vs. η

Before proceding with our analysis, we have to say that what we measured
using the previous method is a global σ, that is, the σ of the global resolution
and not of the detector one. In fact, we can express the former σ as the square
sum of three contributions:

σglobal = σBPC ⊕ σMS ⊕ σCALO (6.1)

• σCALO: it is the intrinsic σ of the calorimeter that we are looking for.
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• σMS: contribution caused by multiple scattering. The particles of the
beam interact with the particle of the air they find between the BPCs
and before reaching the cryostat. The interaction with the chambers
should not give a significant contribution to the multiple scattering
effects: they are composed by two 120µm sheet of mylar at a distance of
40 mm filled of gas (80% argon and 2O% oxygen) that gives a negligible
contribution if compared to the air one (see section 6.1.3).

• σBPC : the intrinsic σ of the chambers.

Our goal is to extract the intrinsic detector resolution, so we have to measure
or calculate all the other contributions.

We began by studying the behaviour of the global resolution at different
η, how it changes when we approach the beam pipe. For each BPC we have
plotted the measured global σ at different η, using some runs of a Y-scan of
120 GeV electrons. From Figure 6.4 we see some common features:

Figure 6.4: How the global φ resolution changes with respect to η and to the
BPC considered.

• for all the chambers σglobal increases with η almost in a linear way. The
increment is mainly due to geometrical reasons.

• σglob is smaller for the BPCs closest to the detector.

• the σ for each couple of BPCs is almost the same.

• The points at η = 2.55 do not follow the slope given by the other points.
One explanation could be that for this cell (with 2.5 < η < 2.6 and
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2.25 < φ < 2.35) we cannot create a 9 cells cluster because we are at
the very top of the inner wheel; so there is an energy leak that could
worsen our resolution.

If the fact that σ is smaller for BPC5 can be explained on account of multiple
scattering effects (as the fact that for each couple it is almost the same), there
is an argument that made us think that, a priori, the resolution should be
better in the higher η region: here, as we said in Section 2.3 when we talked
about the geometry of the detector, the absorber are closer than in the low η
region. So, in principle, we should have obtained more precise measures. We
can conclude that the varying ratio between the shower dimension and the
cluster dimension is more important that the fact of having closer absorbers.

6.1.2 Global φ-resolution Vs. Beam Energy

The next analysis on the global sigma concerns how it does vary as a function
of the Beam Energy, at a fixed η value. We used only the cells with 2.6 <
η < 2.7 and 2.25 < φ < 2.35. Among the runs of the Period II of the Test
Beam we have found for this point seven different energies for the electron
beam listed in Table 6.2.

Run Number Energy

3309 6 GeV
3259 10 GeV
3604 30 GeV
3683 40 GeV
2876 60 GeV
1371 120 GeV
2456 193 GeV

Table 6.2: Runs used.

The energies used are the tabulated ones and not those that we have
calculated using the cluster; so the η-Energy corrections are not taken in
account. Anyway, this cell is in the middle of the first HV sector, so the α
value of Formula 5.1 does not influence the reconstructed energies, only the
scale factor β can influence the calculated energies.

The method used to to get the global σ is the same, but here we tried to
fit the points using the function

σglobal =
a√
E

⊕ const. (6.2)
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We have chosen this function because when we use the energy in the determi-
nation of the position, we expect that the spatial resolution had to follow the
behaviour of energy resolution, which varies as 1/

√
E. To decouple the two

contributions we plotted the σ2 versus the energy. For low energies runs, we
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Figure 6.5: σ2 vs. Energy for
BPC1.
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Figure 6.6: σ2 vs. Energy for
BPC5.

can actually see that there is a considerable difference between the resolution
measured using the BPC 0 and that using BPC 5: this is not very surprising,
because the Multiple Scattering effects depend strongly on the beam energies
and they grow when the energy diminishes.

However, we can see that this fit is not as good as what we expected:
even for the BPC closest to the detector the points at 30 GeV and at 40
GeV are not well fitted and the constant term of the fit function is many
error bars below the zero. For these reasons we try to fit the curve with an
other function:

σglobal =
a

E
⊕ const (6.3)

Using this function the previous problems seem to be solved (Figure 6.7 and
6.8).
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Figure 6.7: σ vs. Energy for
BPC0.
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6.1.3 Intrinsic BPC resolution

Anyway, we have also to calculate the intrinsic resolution of the BPCs. We
use the fact that the BPCs are grouped in couples and that we can state,
from the distances in Table 6.1, that multiple scattering effects between them
are negligible if compared to the global M.S. contribution. Moreover, from
the technical characteristics of the BPCs reported in [21], we can also state
that they do not contribute significantly to M.S. effects: in fact they are
made up by two 120µm layer of a plastic called Mylar separated by 30 mm
of gas (a mix of argon and oxygen). From the following Formula

θ0 =
13.6MeV

βcp
z

√

x

X0

[1 + 0.038 ln(x/X0)] (6.4)

that gives the amplitude of the dispersion, in θ, due to the multiple scattering,
and from the X0 values of mylar and argon given in [22] we obtain that

θ0, BPC = θ0, Mylar + θ0,Arg+Oxy ' 13.6MeV

βcp

√
0.001 (6.5)

while the contribution of the multiple scattering between the BPC5 and the
detector is

θ0, BPC−CALO =
13.6MeV

βcp

√
0.07 (6.6)

at least 70 times bigger. To know the intrinsic φ-resolution of the chambers,
we have plotted the x-position of one chamber if function of the x-position
of the coupled one; then we have followed the same way: TProfile to get
the fit parameters and then the distribution of the differences between the
measured and the fitted value. In fact we considered as the coupled BPCs
were actually one next to the other. The fact that the intrinsic resolution is
not the same for all the BPCs is not too much surprising:

• The couple in the middle are actually different from the others: in [21]
we see that while the other couples contain two measurement planes
(X and Y), the middle station chambers are pairs of physically separed
single plane chambers.

• The intrinsic resolution of the first couple is worse than the last one
because the distance between the two chambers is greater.

Anyway, to analyze their influence on the global σ term we have first of all
to convert them in mrad. We can use as a conversion factor, for each run
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Figure 6.9: Top: intrinsic resolution of the BPCs closest to the detector.
Bottom: intrinsic resolution of the farest couple of BPCs.

and each BPC, the slope of the fit given by the TProfile histogram in Figure
6.3, where we had mm vs. mrad. So,

σBPC,rad =
σBPC,mm√

2
· conv. factor = 0.0003 rad (6.7)

we get that the contribution of the intrinsic resolution that in low energy case
is completely negligible; in higher energies case, we can estimate its influence
calculating σ2

BPC/σ
2
glob = 4% (where for σglob we have taken the smallest

value from the 120 GeV runs displayed in Figure 6.4). For our study we can
consider it negligible. As last check, in the plot of Figure 6.10 there is the
proof that the intrinsic resolution of the BPCs does not change with energy.

6.1.4 Multiple Scattering contribution

As we have already said, the multiple scattering (MS) contribution has to
be evaluated correctly because it could strongly influence the value of the
calorimeter resolution we are looking for, especially in low energies cases or
when we use the BPCs that are far from the detector. In Figure 6.11 we
can clearly see how the correlation between two fixed chambers (and so the
measured resolution using those chambers) changes with the energy. We have
taken the BPC0 and the BPC5, that are 27,5 m far (see Table 6.1), and we
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Figure 6.10: The intrinsic BPCs resolution does not depend on energy.

have plotted their combined σ in function of the beam energy; the curve is
very well fitted by a function of the form σ = a/E + const. and show that
for a given distance, the resolution degradation is due to an MS-like effect
(the multiple scattering could be only one of these factors). In effect, we
should have that σBPC0,BPC5 = σBPC0,BPC3 ⊕ σBPC3,BPC5, if the MS were
the only origin of the resolution degradation. That is, the squared sum of
the multiple scattering contribution given by Formula 6.4 and the intrinsic
BPCs resolution, should give us the resolution measured between the BPCs.
If we plot the difference between the measured σ and the σMS given by

yplane =
1√
3
xθ0 θ0 given by (6.4) (6.8)

(see [22]), what we obtain is not the negligible contribution of the intrinsic
resolution of the BPCs. We can see from the plots in Figure 6.12 that there
is an additional term that grows almost linearly with the distance between
the chambers and that could be interpreted as a beam divergence term.
From the same plots, anyway, we can understand that if we use the BPC5
(that is only 2.2 m far from the cryostat), this contribution will be negligible.

6.2 Global η-resolution

The finite granularity of pad detectors give rise to systematic shift [23] of
the center of the shower toward the center of the cell because the η and φ
values we found in the rtuple for each cells are those of the center of the
cell: so, nevermind where the particle will hit the cell, we will get, as its
position, the position of the center of the cell. In Figure 6.13 we show how
the correlation between Y and η changes when we pass from an infinite to
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Figure 6.11: σ from BPC0 vs BPC5 in fuction of the energy.
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Figure 6.12: σglobal in black and σMS in red vs the distances between BPCs for
3 different energy beams. The geen points come from the squared difference
of the previous two term: they can be interpreted as points of a divergence
term.

a finite granularity. Our case is slightly different because we are using a 9
cells cluster, so the effects of the finite granularity are smoother. In principle
we should have found the same effect in the φ case, but there the accordion
geometry induces a better energy sharing between neighbouring cells, making
this S-shape effect negligible. These S-shape found for η can be fitted and
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Figure 6.13: Difference between finite (Left) and infinite granularity (Right).

used to correct the barycenter position in order to calculate the η-direction
resolution, as we have already done in the φ-case using a linear fit. We tried
to fit our two histograms using the following function:

Y = par[0] · atan(par[1] · η − par[2]) − par[3]) (6.9)

with the following parameters meanings:

• par[0]=scale factor

• par[1]=factor that multiply the argument

• par[2]=it parametrises the center of the cell

• par[3]=shift factor

As we can see in Figure 6.14, the fit does not work equally well for all the
BPCs, with the consequence that sometimes the distribution that we get is
not perfectly gaussian.

6.2.1 η-resolution vs η

We follow the guidelines of the φ resolution, that is, using the same runs
of an Y-scan,we plotted the σ for all the BPCs at different values of η.
This time the result is worse and no clear behaviour or trend can be easily
observed (Figure 6.15): the reason is the not so perfect atan fit for the S-
shape histograms, so our value are a little range-dependent because of the
not perfectly gaussian distribution. Anyway, a small rise of the σ is present
as it was also on the equivalent φ plot and we are able to give an order of
magnitude to this resolution.
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Figure 6.14: Left : S-shape correlation between BPC position and φ coordi-
nate of the barycenter. Middle: the fit of these plot, using Formula 6.9 is not
always perfect. Right : distribution of differences between measured values
and fit values.
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Figure 6.15: σ vs. η for all the BPCs. The linear rise with η is less clear
than in the φ case. The BPC-colour relation is the same as in Figure 6.4

6.2.2 η-resolution at different energies

We go on following the analysis already done for the φ resolution; we per-
formed the η resolution at different energies for a fixed cell, the same used
in the previous section with exactly the same runs. Even in this case we
compare two different fits: σ = a/

√
E + const and σ = a/E + const. Even

for the η− resolution we actually see that the latter fit works better (Figure
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6.16 to Figure 6.19), especially for the BPC5 for which multiple scattering
effects are negligible.
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Figure 6.16: σ2
global for BPC1 in

function of the energy.
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Figure 6.17: σ2
global for BPC5 in

function of the energy.
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Figure 6.18: σglobal for BPC5 in
function of the energy.
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Figure 6.19: σglobal for BPC1 in
function of the energy.

6.3 Summary and conclusions for spatial res-

olution.

We now summarize the most important results obtained in this chapter.

• φ-resolution: at a fixed energy (120 GeV) and varying η we have found
a global resolution comprised between 1.5 mrad and 2.5 mrad for the
BPC closest to the detector. The resolution get worse linearly with η.
Instead the resolution varies with the energy following a 1/E curve.

• Intrinsic BPC resolution. The BPCs give a constant contribution to the
resolution no matter the beam energy used. It is generally negligible
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for energies smaller than 120 GeV. At this energy its contibution in
Formula 6.1 is 4%.

• Contribution of Multiple Scattering. It strongly influences the meaures
taken using low energy beams and BPCs far from the detector. At 120
GeV and using BPC5 its contribution is negligible.

• η-resolution: using 120 GeV runs we obtained for BPC5 resolution
values between 1 mη and 1.5 mη.



Conclusions

This Diploma Thesis has been developped inside the ATLAS experiment:
ATLAS is a detector that from the 2007 will take data in the proton-proton
collider LHC at CERN. The goal of this thesis is a study of the performance
in energy and position reconstruction, using electron beams, of the inner
wheel of the electromagnetic end-cap calorimeter. Data of the Test Beam
of automn 2004 have been used, in order to be able to rapidly implement
efficient and good quality reconstruction algorithms when the experiment
will begin.

The first original part is dedicated to the study of the HV-Energy curve,
that is, to the measured energy changes when we vary the potential applied
to the calorimeter electrodes. These corrections will be important when it
will not be possible to apply the nominal HV value. We found that we can
fit our data using a power function E = a ·HV b, obtaining a value for the b
exponent of b = 0.366± 0.07; this value is very close to the one obtained for
the barrel and it shows that it depends only on the Liquid Argon properties.

We have then briefly analyzed the shape of the signal after the RC−CR2

shaper and we found that the physical signal differs considerably from the
theoretical one, probably because the theoretical signal come from barrel
studies, where the liquid argon gap is constant. In the end cap the liquid
argon gap is not constant and the effects of the accordion geometry have not
been considered.

The study on the noise concerned especially the influence that it could
have on the calorimeter response, comparing it with what has been obtained
in Test Beam 2002. The noise of Test Beam 2004 has an amplitude slightly
bigger than the previous one. Morevover we found a weak effect common to
all the inner wheel, as the whole calorimeter undergo a common fluctuation.

The central part of this thesis concerns the HV corrections that has to
be applied to get the most uniform response. In fact, to compensate the
varying gap of liquid argon (and so the varying electric field experienced by
the ionizing particles), a step varying potential has been applied. So, within
each each HV sector, there is still a η-dependence to take in account and
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that has to be corrected using formula 5.1. The α factors that minimize,
for each HV sector, the range of the energy response are α = 0.55 for the
sector 2.5 < η < 2.8 and α = 0.45 for the 2.8 < η < 3.2 one. After these
corrections, that have to be applied cell by cell, we have an energy response
constant to within the ± 2% over the whole η range of the inner wheel.

All second order corrections (cluster corrections and other effects) have
been absorbed using a third degree polynomial: after that our response has
distribution with a σ of the order of 1%.

These results could be improved using the calibration ramp (that is, the
coefficients that allow us to convert the ADC counts to nA) of 2004, but up
to January 2006 there were some not well understood problem when we used
it. For these reasons, and using the fact that setups and electronics of the
two Test Beams are exactly the same, we performed our calculations with
the calibration ramps of 2002.

Finally we analyzed the spatial resolution of the Inner-Wheel. Although
having a good resolution was not a guideline in the contruction of the inner
wheel (its main goal is to measure the missing energy), a good evaluation
of its spatial resolution will allow the Cracow ATLAS group to study the
luminosity using a channel in which a pair of electrons is produced at a
φ-angle of 180 in the high-η region.

For φ-resolution we found a value of 1.5 mrad for the lowest η and 2.5
mrad for η=3.1. Within this interval, the resolution grows almost linearly.

For the η-resolution the behaviour is less clear but the values obtained
are between 1 and 1.5 mη.



Appendix A

Two methods for the signal
reconstruction.

In this Appendix we will briefly describe two frequently used methods for
the signal reconstruction [25].

A.1 Parabola Method

This signal reconstruction algorithm uses only 3 of the 5 samples stored in
order to calculate the amplitude and the peak time of the signal. The strategy
of this algorithm is to get some crude informations from the interpolations
of these 3 samples and then to improve the results using ad hoc corrections.

Briefly, the Parabola method works as follow:

• the greatest samples and the two neighbours are interpolated using a
parabolic function. The time of the maximum of the parabola is a first
extimation of that parameter.

• To perform the corrections we use a signal shape that comes from a
precise calibration signal. First of all we define the correlation between
the peak value of the measured signal and the first crude time estima-
tion. Then we calculate the ratio between the real amplitude of the
reference signal and the maximum of the sampled signal at the same
crude time value.

• The two previous corrections are performed only for a cell and extended
to the whole calorimeter. The true value of the peak time is obtained
by applying the first correction to the sampled signal, the maximal
amplitude is calculated applying the second correction to the greatest
sample stored.
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This method is affected by some errors that will influence the analysis.

• all the corrections are performed for only one cell, so eventual ununi-
formities among the various cells

• the signals used as reference are calibration ones, so they differ signifi-
cantly from the physical one.

• the maximal amplitude is obtained only from the sampling of the max-
imum, so it is very sensitive to fluctuations.

There is another reconstruction method based on a cubic interpolation of
the samples stored. Essentially it works as the parabola one, with the only
difference that the samples are interpolated using a third degee polynomial.

A.2 Optimal Filtering

The Optimal Filtering [24] is a way to determine the peak amplitude and
the time of the sampled signals. Its fundamental characteristic is that it
minimises the noise.

If we consider a signal of the generic shape:

f(t) = Ag(t− τ) + n(t) (A.1)

where A is the signal amplitude, g(t) the shape of the unitary signal and τ
the delay with which the signal starts with respect to the sampling time. The
function n(t) represents the noise that is superposed to the signal during the
data acquisition. If τ is small with respect to t, we can expand the previous
expression and get

f(t) ≡ A[g(t) − τg
′

(t)] + n(t) (A.2)

where g
′

(t) is the first derivative of the signal shape g(t). Therefore the signal
becomes

Sk = A(gk − τg
′

k) + nk (A.3)

with the index k that represents the value of the functions at the sampling
time tk.

The noise is supposed to be a zero mean value function and its autocor-
relation function is supposed to be known

< n(t) >= 0
< ninj >= Rij

(A.4)
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The informations on the peak amplitude and the start time of the signal
are obtained from linear combinations of the N samples {S1...SN}. The
coefficients ak and bk are chosen for the following equations

U =
∑N

k=1 akSk

V =
∑N

k=1 bkSk
(A.5)

in order to minimise σU and σV with the conditions

< U >= A ⇒
N
∑

k=1

akgk = 1 ,
N
∑

k=1

akg
′

k = 0 (A.6)

< V >= Aτ ⇒
N
∑

k=1

bkgk = 0 ,
N
∑

k=1

bkg
′

k = −1 (A.7)

From eq.(A.4) we get that

σ2
U = V ar[U ] =

∑

ij

aiajRij (A.8)

σ2
V = V ar[V ] =

∑

ij

bibjRij (A.9)

We can minimise the σ2
U and σ2

V using the technique of the lagrangian mul-
tiplicators. We find two set of equations; the first for the peak amplitude:

0 = ∂
∂ak

[1
2

∑

ij aiajRij − λ
∑

i aigi − µ
∑

i aig
′

i]

=
∑

i akRij − (λgk − µg
′

k)
(A.10)

ai = λ
∑

k

R−1
ik gk − µ

∑

k

R−1
ik g

′

i (A.11)

λ =
Q2

∆
µ = −Q3

∆
(A.12)

the second for timing informations:

0 = ∂
∂bk

[1
2

∑

ij bibjRij − ρ
∑

i bigi − σ
∑

i big
′

i]

=
∑

i bkRij − (ρgk − σg
′

k)
(A.13)

bi = ρ
∑

k

R−1
ik gk − σ

∑

k

R−1
ik g

′

i (A.14)

ρ =
Q3

∆
σ = −Q1

∆
(A.15)

using
Q1 =

∑

ij

gigjR
−1
ik Q3 =

∑

ij

gig
′

jR
−1
ik (A.16)

Q2 =
∑

ij

gj
i g

′

jR
−1
ik ∆ = Q1Q2 −Q2

3 (A.17)
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Appendix B

Riassunto

B.1 Il Modello Standard

La fisica subnucleare moderna descrive il mondo in termini di particelle: la
materia è composta da particelle elementari e anche le loro interazioni sono
interpretate in termini di scambio di altre particelle elementari. La teoria che
descrive queste interazioni e i cui risultati sono confermati dagli esperimenti
ad un livello di precisione che nessun’altra teoria aveva dato è chiamata
Modello Standard.

Le interazioni mediate dalle particelle di campo sono le seguenti:

• elettromagnetica: la particella di campo che media questo tipo di
interazioni è il fotone, particella di spin 1 e priva di massa. Tali inter-
azioni riguardano tutte le particelle dotate di carica elettrica.

• debole: è la forza all’origine dei decadimenti β, mediata da bosoni
vettori massivi W+, W− and Z0.

• forte: è la forza che mantiene uniti i costituenti dei nuclei ed è mediata
da 8 bosoni privi di massa chiamati gluoni.

• gravitazionale: agisce tra tutte le particelle dotate di massa. La
particella responsabile di tale interazione, il gravitone, non è ancora
stata scoperta, ma dovrebbe avere spin 2.

In realtà il Modello Standard ha unificato solo le prime tre interazioni ma non
descrive la gravitazione; l’unificazione del Modello Standard con una teoria
quantistica della gravitazione rappresenta una delle sfide più affascinanti nel
campo della fisica teorica.

Daremo ora una breve descrizione degli elementi del Modello Standard.
Le particelle fondamentali che compongono la materia (matter particles) sono
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chiamate fermioni poiché seguono la statistica di Fermi-Dirac. Hanno spin
1/2 e possono essere suddivisi in leptoni e quark. Ciascuna di esse possiede
un’antiparticella, cioè una particella della stessa massa e spin ma con carica
elettrica opposta.

Le particelle di campo (field particles) hanno invece spin intero e seguono
la statistica di Bose-Einstein. Quando mediano le interazioni esse sono parti-
celle virtuali : processi come quello di Figura 1.1 possono aver luogo anche ad
energie minori di quelle necessarie alla creazione del bosone Z0, dal momento
che la particella viene creata e annichilita in un intervallo di tempo minore
di ∆E/h̄, preservando cos̀ı la conservazione della massa.

Il Modello Standard è una Teoria Quantistica di Campo basata sull’inva-
rianza di gauge rispetto al gruppo SU(2)L × U(1)Y per quanto riguarda il
settore elettrodebole e rispetto al gruppo SU(3)C per il settore delle inter-
azioni forti.

L’approccio moderno alle teorie quantistiche di campo è quello di pren-
dere come requisito iniziale l’invarianza rispetto a trasformazioni di fase lo-
cale; cos̀ı facendo, si deve introdurre necessariamente un campo di gauge
accoppiato al campo di materia, sostituendo la derivata ordinaria con una
covariante (formule 1.5 e 1.6).

Il Modello Standard ha avuto numerosi successi:

• È una teoria quantistica di campo rinormalizzabile che permette l’unifi-
cazione delle interazioni elettromagnetiche, deboli e forti.

• Mediante il meccanismo di Higgs risolve il problema dell’assegnazione
delle masse ai bosoni vettori e ai fermioni.

• Nel settore elettrodebole tutte le sue predizioni differiscono dai dati
sperimentali per meno dello 0.1%.

Tuttavia presenta alcuni problemi non ancora risolti:

• Il bosone di Higgs non è stato ancora osservato. La sua scoperta è uno
degli obiettivi principali dell’LHC.

• In una Teoria della Grande Unificazione le costanti di accoppiamento
running delle interazioni elettromagnetiche, deboli e forti non conver-
gono.

• Il Modello Standard si basa su 19 parametri e non c’è nessuna spie-
gazione per il fatto che effettivamente siano 19.

• Il Modello Standard non spiega la massa del neutrino.

Questi problemi ancora irrisolti conducono a pensare che il Modello Stan-
dard sia solo un’approssimazione di una teoria ancora più fondamentale.
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B.2 L’esperimento ATLAS all’LHC

Il collisionatore adronico LHC sarà l’acceleratore per la fisica delle alte energie
in cui pacchetti di protoni subiranno collisioni ad energie del centro di massa
mai raggiunte prima, pari a 14 TeV , con una luminosità di 1034cm−2sec−1.

Uno degli obiettivi primari di questo acceleratore è la scoperta del bosone
di Higgs, l’unica particella del Modello Standard non ancora osservata. Si
cercherà inoltre di osservare le particelle supersimmetriche e si effettueranno
misure di precisione sulla violazione di CP e sul Modello Standard in generale.

È stato scelto un collisionatore adronico, contrariamente a LEP, a causa
della radiazione di sincrotrone. Infatti le particelle cariche, quando sono ac-
celerate, emettono radiazione. Osservando le formule 2.1 e 2.2, si comprende
che, a parità di energia, particelle più pesanti hanno una minore perdita di
energia.

Le interazioni tra pacchetti di protoni sono più complicate di quelle stu-
diate a LEP (elettroni-positroni) poiché i protoni non sono particelle ele-
mentari, bens̀ı sono formati da quarks e gluoni che si muovono liberamente
all’interno di essi (fenomeno della libertà asintotica) ma che non esistono
come particelle isolate.

Il fenomeno della libertà asintotica ci impedisce di conoscere esattamente
la frazione di momento dell’adrone portato dal singolo quark. Per processi
inclusivi, l’energia e il momento possono essere scritti come nelle formule 2.3
e 2.4. Nella 2.4 si osserva che la rapidità è invariante sotto trasformazioni di
Lorentz: è quindi vantaggioso usare la rapidità (o la pseudo-rapidità nel caso
di particelle ultra-relativistiche) perché ci permette di ottenere sezioni d’urto
Lorentz-invarianti. Inoltre è una quantità che può essere sempre misurata,
anche quando la massa e il momento delle particelle non sono noti.

B.2.1 Il rivelatore ATLAS

Il rivelatore ATLAS è composto da numerosi sotto-rivelatori con obiettivi
differenti. ATLAS ha simmetria cilindrica con l’asse parallelo al fascio di
particelle.

Partendo dall’asse di simmetria e seguendo la coordinata radiale troviamo
le seguenti componenti:

• Rivelatore interno. Il suo compito è quello di ricostruire le traiettorie
delle particelle cariche nella regione più vicina al punto di interazione.
È composto da rivelatori di vertice a pixel, rivelatori a semiconduttore
e da transition radiation trackers, questi ultimi per la misura del tempo
di deriva.
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• Solenoide centrale. Produce il campo magnetico necessario per curvare
le traiettorie delle particelle cariche e determinare quindi la loro car-
ica elettrica e il loro momento trasverso. Tale campo magnetico avrà
un’intensità di 2 Tesla.

• Calorimetri. I calorimetri avranno un ruolo cruciale all’LHC dal mo-
mento che la loro risoluzione migliora con l’energia mentre quella degli
altri sotto-rivelatori peggiora. In Figura 2.7 vediamo i tre tipi di
calorimetri presenti: quello elettromagnetico (composto da una corpo
centrale e due calorimetri tappo), quello adronico e il calorimetro in
avanti. Il calorimetro elettromagnetico verrà analizzato più in dettaglio
nella sezione B.2.2.

• Spettrometro a muoni. È situato nella parte più esterna di ATLAS e ha
il compito di identificare i muoni prodotti nelle interazioni e di misurare
la loro energia e le loro traiettorie. È composto da camere di precisione
e da camere di trigger : le prime hanno un’ottima risoluzione spaziale
ma una risoluzione temporale più grande dell’intervallo di tempo a
cui avvengono le interazioni. Per questo motivo sono accoppiate alle
camere di trigger che selezionano gli eventi in cui sono presenti dei
muoni.

B.2.2 Calorimetro Elettromagnetico

Il calorimetro elettromagnetico deve avere i seguenti requisiti:

• La maggior copertura possibile in pseudorapidità, necessaria per l’osservazione
di processi quali H → γγ e H → 4e.

• Un’eccellente risoluzione energetica tra 10 e 3000 GeV. Per i due canali
fondamentali per l’osservazione dell’Higgs (elencati al punto precedente)
la risoluzione deve essere al massimo dell’1%. Per un calorimetro la
risoluzione è generalmente espressa dalla relazione

∆E = b ⊕ a
√
E ⊕ cE (B.1)

in cui b è il termine relativo al rumore, a il termine di campionamento
dovuto alle fluttuazioni dell’energia depositata dallo sciame elettromag-
netico nel calorimetro. Infine, c è il termine costante dovuto a non-
uniformità nella costruzione. Ad alte energie c diventa il contributo
dominante alla risoluzione e per questo motivo deve essere dell’ordine
dello 0.7%.
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• Uno spessore di almeno 24 X0 (lunghezze di radiazione) per contenere
l’energia degli sciami elettromagnetici.

• Ottima risoluzione spaziale e capacità di distinzione tra jet dovuti ad
elettroni e jet dovuti a fotoni.

I calorimetri si possono suddividere in calorimetri a campionamento e
in calorimetri omogenei. Nei primi vi è un’alternanza di strati di materiale
assorbente e di materiale attivo, nel quale le cariche elettriche generate dalla
ionizzazione dell’argon liquido sono raccolte dagli elettrodi; quelli omogenei
sono composti da un solo materiale che funge allo stesso tempo da assorbitore
e da materiale attivo. Questi ultimi hanno migliore risoluzione energetica ma
bassa risoluzione spaziale.

Il calorimetro elettromagnetico di ATLAS è un calorimetro a campiona-
mento. Le ragioni di tale scelta sono principalmente economiche: con energie
dell’ordine del TeV , un calorimetro omogeneo sarebbe stato troppo grande.
Tuttavia con un calorimetro a campionamento misuriamo solo una frazione
dell’energia, chiamata frazione di campionamento (Formula 2.11).

Il calorimetro elettromagnetico di ATLAS è composto da un corpo cen-
trale (barrel) che copre la regione di pseudo-rapidità |η| < 1.45 e da due tappi
(end caps) composti da due ruote coassiali che coprono rispettivamente la re-
gione ad 1.35 < |η| < 2.5 e quella a 2.5 < |η| < 3.2.

Calorimetro barrel Il calorimetro barrel è un rivelatore in cui gli as-
sorbitori di piombo e il materiale attivo (argon liquido) sono disposti con
una geometria a fisarmonica (Figura 2.9 e Figura 2.18) che permette una
simmetria in φ senza interruzioni. In Tabella 2.10 osserviamo che sia nel
barrel che nell’end cap lo spessore degli assorbitori varia in funzione della
pseudo-rapidità per ottimizzare le performance del calorimetro in risoluzione
energetica.

Il barrel è suddiviso in tre strati (samplings) longitudinali:

• Il primo ha uno spessore di 6 X0 ed è formato da strisce sottili nella
direzione η. Ha il ruolo di identificare la direzione dello sciame elet-
tromagnetico con grande precisione e di determinarne la sua struttura
tridimensionale. Ha una granularità pari a ∆η 0.0031 × ∆φ 0.025.

• Il secondo strato ha uno spessore di 18 X0 e raccoglie la maggior
parte dell’ energia dello sciame elettromagnetico. Ha granularità pari
a 0.025× 0.025 che permette di distinguere gli sciami elettromagnetici
da quelli prodotti da ioni.



108 APPENDIX B. RIASSUNTO

• Il terzo sampling ha spessore pari a 12X0 ed è dotato di una granularità
meno fine, dal momento che non vi è più la necessità di determinare la
direzione dello sciame ma solo quella di raccogliere l’energia rimasta.

Calorimetro EM End-Cap ad ATLAS

Esattamente come il calorimetro barrel, il calorimetro end cap consiste in
strati di assorbitore di piombo intervallati da argon liquido, utilizzando sem-
pre una geometria a fisarmonica. L’end cap ha un raggio esterno di 2077 mm
ed è situato nell’apposito criostato ad una distanze di 3641 mm dal punto di
interazione.

Come già detto in precedenza, l’end cap è costituito da due ruote coassiali
e concentriche: l’esterna copre la regione 1.35 < |η| < 2.5 mentre quella
interna (di cui lo studio delle performance sarà l’argomento principale di
questa tesi) copre la regione 2.5 < |η| < 3.2. La ruota esterna dispone di
768 assorbitori e 768 elettrodi mentre quella interna solamente 256; ogni
assorbitore della ruota interna è allineato con uno della ruota esterna.

Per mantenere la geometria a fisarmonica in questa regione, gli assor-
bitori sono stati disposti a raggiera con le pieghe della fisarmonica lungo la
direzione del fascio di particelle. Per assicurare una buona risposta azimu-
tale, lo spessore combinato dell’argon liquido e degli assorbitori che viene
attraversato dalle particelle deve essere indipendente da φ; dal momento che
lo spessore dell’argon liquido varia col raggio, è necessario variare l’ampiezza
delle pieghe dell’assorbitore e anche l’angolo che formano tra di loro. Per
ragioni tecniche tale angolo deve essere compreso tra 60 e 120 gradi: ciò
limita a 3 il rapporto tra raggio esterno e interno di ciascuna ruota. Questa
è la ragione principale per l’utilizzo di due ruote concentriche, non essendo
possibile coprire l’intervallo in η con una sola struttura a fisarmonica.

Il picco della corrente generata dalle cariche raccolte può essere espresso
come in Formula 2.13. Per un campo elettrico costante e quindi per una
velocità di deriva degli elettroni costante, la dipendenza da η di fsamp e
quella di g tendono ad annullarsi reciprocamente. Tuttavia per una migliore
compensazione di queste due variabili, e quindi per una risposta più uniforme,
si dovrebbe variare in maniera continua il campo elettrico in funzione di η,
poiché la velocità di deriva è una funzione del campo elettrico (vd ∝ Eb, con
b ∼ 0.3). Dal momento che E dipende dal potenziale applicato agli elettrodi,
si arriva alla Formula 2.14.

Per avere un fattore di conversione tra corrente ed energia che sia in-
dipendente da η, il potenziale dovrebbe variare in maniera continua, come
detto in precedenza; tuttavia, per ragioni tecniche ed economiche viene us-
ato un potenziale costante su piccoli intervalli di η (Figura 2.17). In seguito
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l’energia ricostruita dovrà essere corretta per ogni settore di alta tensione:
tali correzioni sono la parte centrale di questa tesi.

Per ciò che concerne granularità e campionamento, la ruota esterna ha
caratteristiche molto simili a quelle del barrel. La ruota interna invece è
costituita da solo due sampling aventi una granularità molto meno fine poiché
il suo obiettivo primario non è l’avere una buona risoluzione spaziale bens̀ı
la misura dell’energia mancante dei vari eventi.

B.3 Test Beam

Nel Test Beam del 2004 è stato posizionato in uno dei criostato un ottavo
della ruota completa dell’end cap elettromagnetico (EMEC) assieme a due
moduli di quello adronico (HEC), successivamente riempito di argon liquido
alla temperatura di 89.9 K. Nelle Figure 2.20 e 2.22 possiamo vedere il setup
completo del Test Beam con i vari sotto rivelatori usati per fornire un segnale
di trigger e per ottenere la traiettoria delle particelle del fascio.

Per ridurre il materiale di fronte al calorimetro, il criostato ha una finestra
circolare in cui lo spessore della parete è notevolmente ridotto e tramite una
schiuma a bassa densità particolare è stato possibile togliere l’argon liquido
da tale regione.

B.3.1 Elettronica di lettura e calibrazione

La carica generata da una particella ionizzante che attraversa la regione attiva
del calorimetro viene raccolta grazie al potenziale applicato tra elettrodo e
assorbitore. Il segnale che si ottiene ha una forma triangolare.

Il calorimetro di ATLAS non ha un guadagno interno, quindi il segnale
misurato è direttamemte proporzionale alla carica raccolta. Il segnale ge-
nerato nel gap di argon liquido viene letto dagli elettrodi e inviato alle carte
sommatrici (summing board) dove vengono sommati i segnali degli elettrodi
appartenenti allo stesso canale di lettura.

Le carte sommatrici sono raggruppate dalle carte madri secondo uno
schema 2 × 2. Il segnale viene poi inviato all’elettronica di lettura situ-
ata all’esterno del criostato: qui un pre-amplificatore, per ridurre l’influenza
del rumore, amplifica il segnale che viene successivamente elaborato da un
formatore CR−RC2 (Figura 2.23). Il segnale dopo la formatura viene cam-
pionato ogni 25 nsec, alla frequenza a cui si hanno le interazioni fra pacchetti
di protoni, e viene memorizzato temporaneamente in memorie analogiche in
attesa della decisione presa dal trigger di livello 1. Se tale segnale supererà
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le selezioni del trigger, sarà amplificato e cinque punti della parte positiva
saranno digitalizzati e memorizzati.

Poiché solo 5 punti della curva del segnale vengono memorizzati, di-
venta fondamentale disporre di metodi molto precisi per la ricostruzione
dell’energia: i più importanti sono il metodo della parabola e quello dell’opti-
mal filterings. In generale, la tipica procedura per la ricostruzione dell’energia
è la seguente:

• Calcolo del piedestallo, ossia il valore in conteggi ADCs quando non vi
è alcun input.

• Sottrazione del piedistallo da tutti i campionamenti

• Calcolo dell’ampiezza e della posizione nel tempo per ogni evento us-
ando o un’interpolazione cubica, o il metodo della parabola o quello
dell’optimal filtering.

• Conversione in nA dei valori in uscita espressi in conteggi ADC .

B.4 Curva HV-Energia e forma del segnale

La prima parte originale di questo lavoro concerne lo studio della curva
dell’energia ricostruita in funzione del valore della tensione applicata agli elet-
trodi per verificare che abbia lo stesso comportamento in tutto il calorimetro
elettromagnetico (per questo motivo abbiamo paragonato i nostri risultati a
quelli in [10]).

Il primo passo è stato trovare l’andamento dell’energia ricostruita a sec-
onda del valore del potenziale applicato. Usando il valore nominale di alta
tensione, l’energia ricostruita del fascio di elettroni sarà l’energia effettiva del
fascio.

L’energia di ogni evento è stata calcolata usando un cluster di 9 celle per
minimizzare l’influenza del rumore elettronico che domina l’output delle celle
lontane dal punto in cui il fascio colpisce il rivelatore; per ogni evento si è
trovata la cellula baricentro usando le formule in 3.1 e in seguito sono state
prese le 8 celle che la circondano. È ragionevole prendere un cluster di solo
9 celle perché la granularità dell’end cap è di 0.1 in η e 0.1 in φ.

Tuttavia ciò non è sufficiente per ottenere misure precise dell’energia degli
elettroni nel fascio: senza selezioni (cuts) appropriate sul valore minimo di
energia che le celle devono registrare. Senza tali imposizioni verrebbe consid-
erata l’energia di tutti gli eventi riconducibili a pioni e muoni, che depositano
nell’EMEC solo una piccola quantità della loro energia (Figure 3.2 e 3.3).
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Per svolgere ogni tipo di analisi diventa indispensabile un’accurata “puli-
zia” del fascio di particelle per evitare che la nostra analisi sia influenzata
da eventi relativi a muoni e pioni: per questo motivo sono stati applicati cut
su rivelatori che fanno da trigger sul segnale e infine un cut per far s̀ı che
ogni particella analizzata rilasci nell’EMEC un’energia maggiore di quella
rilasciata nell’HEC (Figure 3.5, 3.6 e Tabella 3.1).

B.4.1 Fit della curva HV-Energia

Le prese dati (run) analizzate riguardavano fasci di elettroni che colpivano il
rivelatore in due punti appartenenti a due settori di alta tensione differenti.
Applicati i vari tagli a tutte le run, abbiamo cercato di fittare le energie
trovate utilizzando la funzione E = a ·HV b.

In principio abbiamo tenuto le run incidenti nella parte inferiore del rivela-
tore separate dalle altre; fittando la curva data dai valori di tali run abbiamo
ottenuto il grafico in Figura 3.7. Se la curva ottenuta dipendesse solo dalle
proprietà dell’argon liquido, come ipotizziamo, dovremmo ottenere un fit ra-
gionevole anche per le run della parte superiore del rivelatore mantenendo
lo stesso esponente b e fittando solo a. Il risultato ottenuto è piuttosto sod-
disfacente ma può essere notevolmente migliorato escludendo dal fit le run
effettuate con un potenziale minore di 400 V: a potenziali più bassi il numero
di eventi che passa i tagli applicati è molto basso e ciò impedisce di avere
statistiche soddisfacenti.

Nella Tabella 3.2 abbiamo confrontato i valori dell’esponente b da noi ot-
tenuti e quelli trovati per il barrel trovando un accordo più che soddisfacente.

B.4.2 Forma del Segnale

Successivamente abbiamo studiato la forma del segnale dopo la formatura
CR−RC2, confrontandola con quella teorica. In Figura 3.16 possiamo vedere
a destra come la forma del segnale cambi al variare del tempo di deriva,
mentre Formula 3.3 dimostra come il tempo di deriva sia legato alla tensione
applicata agli elettrodi. Osservando i segnali fisici misurati, vediamo che
differiscono da quelli teorici:

• L’undershoot (ovvero la parte del segnale che segue quella esponenziale)
non è piatto e la risalita del segnale non è ripida ma tende a confondersi
con l’undershoot.

• La relazione tra tempo di deriva e potenziale non è esattamente cor-
rispondente a quella attesa.
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Abbiamo formulato varie ipotesi per spiegare questo comportamento anoma-
lo; la più probabile riguarda la struttura a fisarmonica dell’EMEC. Infatti
nelle regioni dove sono situate le pieghe degli assorbitori, la distanza tra gli
elettrodi è maggiore e quindi le cariche create dalla ionizzazione sono esposte
ad un campo elettrico più debole; la curva di ionizzazione che teoricamente
dovrebbe essere triangolare, diventa un’interpolazione di curve triangolari
con tempi di deriva e ampiezze differenti. La curva risultante ha andamento
esponenziale e dopo la formatura ciò comporta un undershoot non piatto
(Figura 3.20).

B.5 Rumore

È stata effettuata in seguito un’analisi sul rumore per osservare quanto possa
influenzare le misure di eventi fisici.

Il primo test effettuato riguardava la natura gaussiana del rumore, per
verificare che effettivamente fosse caratterizzato solo da fluttuazioni statis-
tiche. Per un rumore puramente gaussiano dovremmo ottenere che lo scarto
quadratico medio (RMS) della distribuzione della media dei 32 campiona-
menti di ogni evento sia uguale al valor medio della distribuzione degli RMS
di ogni evento diviso la radice quadrata di 32 (vedi Formula 4.1) [22]. Invece,
come si può osservare in figura 4.1, ci sono celle che presentano una marcata
differenza tra questi due valori.

In principio abbiamo ipotizzato un’origine hardware per questo strano
comportamento, ma le celle che mostrano questa deviazione dal comporta-
mento gaussiano appartengono a carte sommatrici e a carte di alta tensione
differenti.

Un’altra sua possibile origine potrebbe essere la presenza di un rumore a
bassa frequenza che influenza la distribuzione della media dei 32 campiona-
menti lasciando invariata quella degli RMS. Effettivamente si può osservare
nelle figure 4.4 e 4.5 un aumento, comune a tutto il rivelatore, di tale dif-
ferenza .

Un modo per evidenziare questo rumore a bassa frequenza è quello di
mettere la media dei 32 campionamenti in funzione della pendenza della
regressione lineare del segnale [15]: la presenza di tale rumore disporrebbe
i punti su una circonferenza. Tuttavia, la figura 4.6 di destra mostra una
distribuzione uniforme per tutte le celle della ruota interna dell’EMEC.

Un ulteriore analisi svolta riguarda la ricerca di eventuali fenomeni di
cross talk : mettendo in relazione la media dei campionamenti di una cella
con lo stesso valore di un’altra cella. Si osserva una forte correlazione tra
tutte le celle, come se l’intero calorimetro subisca le stesse fluttuazioni.
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Infine abbiamo confrontato i nostri risultati con quelli ottenuti per il test
beam del 2002, osservando che quest’ultimo ha un rumore piú uniforme al
variare di η e φ ma una differenza di 2 conteggi ADC tra il primo sampling e il
secondo. Il test beam del 2004 presenta un rumore molto simile su entrambi
i sampling ma molto meno uniforme.

B.6 Correzioni di Alta Tensione

La correzione più importante riguarda la risposta del calorimetro al varia-
re di η, dal momento che nell’EMEC il gap di argon liquido diminuisce
all’aumentare della pseudorapidità e quindi si dovrebbe applicare un poten-
ziale che vari in maniera continua per bilanciare tale effetto. Come già detto
in precedenza, il potenziale varia su intervalli finiti: sette settori di alta ten-
sione per la ruota esterna dell’EMEC e solo due per quella interna.

Questa divisione lascia una dipendenza da η che dovrà essere corretta us-
ando la Formula 5.1. Spieghiamo brevemente il significato dei vari parametri:

• β è un fattore di scala in teoria prossimo a 1.

• Si può dimostrare che il fattore α è uguale, al prim’ordine, alla somma
della frazione di campionamento e dell’esponente b della curva HV-
Energia (formule da 5.2 a 5.11).

Per il calcolo di tali correzioni sono stati utilizzati run corrispondenti ad uno
scan verticale nel centro del rivelatore con un fascio di elettroni di 120 GeV .
L’energia di queste run è stata ricostruita usando un’interpolazione cubica ed
il suo valore calcolato ricorrendo al cluster di 9 celle già usato in precedenza.

Osservando il grafico in Figura 5.3 in cui abbiamo posto l’energia in fun-
zione della pseudorapidità, possiamo immediatamente notare due caratteris-
tiche inattese: l’intervallo in energia è estrememente ampio (l’energia varia
del 40%), soprattutto se paragonato al Test Beam del 2002. Inoltre, se con-
sideriamo Formula 5.1, i punti a η = 2.65 non dovrebbero subire correzioni
(visto che, a priori, il fattore β vale circa 1) ma la loro energia non è affatto
vicina ai 120 GeV .

Per verificare che questo comportamento non sia dovuto a celle mal fun-
zionanti, abbiamo ripetuto la stessa analisi per uno scan verticale a X=-60
e per run in cui il fascio colpisce il rivelatori in celle differenti. Sovrappo-
nendo i vari risultati ci si rende conto di come all’origine dell’ampiezza del
range di energia non ci siano celle non funzionanti ma puttosto ricostruzioni
o calibrazioni non corrette (5.6).
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B.6.1 Correzioni a livello di celle

Se proviamo a correggere i grafici 5.3 e 5.6 con valori dei ragionevoli per α
e β (α = 0.5, β = 1), vediamo che la pendenza della retta lungo la quale si
trovano i punti, nei rispettivi settori di alta tensione, diminuisce ma non a
sufficienza: siamo lontani dall’avere una risposta uniforme, soprattutto nel
settore di alta tensione 2.5 < η < 2.8. Per ottenerla dovremmo utilizzare
valori di α privi di significato fisico dal momento che α dovrebbe essere
compreso tra 0.4 e 0.7.

Per capire se l’origine del problema sia nella ricostruzione dell’energia, al
posto dell’interpolazione cubica abbiamo utilizzato versioni semplificate di
optimal filterings: con questi la situazione migliora leggermente, le pendenze
delle rette diminuiscono, soprattutto nel settore 2.8 < η < 3.2 per il quale
in alcuni casi troviamo valori di α compatibili con quelli attesi. Tuttavia per
l’altro settore di alta tensione i valori ottenuti non hanno significato fisico.

Nemmeno con la nuova versione degli optimal filterings (portata a termine
nel settembre 2005) la situazione è migliorata. La spiegazione rimanente per
un intervallo di energia cos̀ı ampio sembrerebbe risiedere quindi in un errore
nella calibrazione. Tale ipotesi è supportata dal fatto che anche nel TB 2002,
prima di implementare la corretta calibrazione, c’era una situazione simile
alla nostra (Figura 5.10).

Infatti, con la nuova calibrazione [19] la situazione migliora immediata-
mente: l’intervallo di energia per i vari scan analizzati è minore del 20% già
prima di qualsiasi correzione (Figura 5.11 e 5.12). Bisogna tuttavia osservare
che:

• Prese dati con baricentro nella cella 2.5 < η < 2.6 hanno energie più
basse di quanto atteso, ma ciò può essere spiegato col fatto che, essendo
celle all’estremità del rivelatore, non è possibile ricostruire un cluster
di 9 celle, con conseguente perdita di energia.

• I punti in 2.9 < η < 3.0 non seguono la retta data dalle altre run dello
stesso settore di alta tensione.

• in Figura 5.14 si può osservare che l’energia delle run con fascio puntato
sugli standard points I e J è molto più bassa: la differenza diventa
ancora più evidente sovrapponendo i risultati dei vari scan.

In principio si è supposto che quest’ultimo problema fosse dovuto a questioni
di guadagno. Infatti, in [19] notiamo che in caso di guadagno MEDIO alcuni
canali non sono perfettamente calibrati, e avendo le run utilizzate un fa-
scio ad alta energia, era possibile che il segnale fosse stato amplificato con
guadagno MEDIO. Tuttavia analizzando uno scan a X-120 (zona in cui si
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trova il punto I) a 60 GeV si riscontra lo stesso problema ad ogni η. Questo
esclude che il problema sia causato dal guadagno.

Abbiamo quindi provato ad usare la calibrazione del TB del 2002: avendo
i due TB la stessa elettronica e lo stesso set-up dovremmo ottenere gli
stessi valori. Invece, con la calibrazione del 2002, questo problema scom-
pare (Figura 5.16) dandoci una risposta molto simile in tutto il calorimetro
(Figure 5.18 e 5.19).

B.6.2 Calcolo di α e β

I migliori valori di α per i due settori di alta tensione, che danno la risposta
più uniforme possibile, sono quelli che minimizzano la σ della distribuzione di
punti dell’istogramma in Figura 5.18. Bisogna ricordare che i due valori di α
non sono completamente indipendenti dal momento che i cluster contenenti le
celle centrali del calorimetro subiscono le correzioni di entrambi i valori. Ciò
contribuisce ad alterare l’uniformità della risposta e si dovrà tenerne conto
nelle correzioni del second’ordine.

La strategia seguita per ottenere tali valori è stata quella di fissare α1

e variare α2 fino a trovare un minimo nella σ della distribuzione di punti.
Successivamente si è fissato tale valore di α2 facendo variare α1 trovando
un nuovo minimo. Iterando questo processo i valori di α convergevano verso
quelli indicati nella Tabella 5.4. Tuttavia cambiando del 10-15% questi valori
non si hanno variazioni drammatiche nella risposta in energia.

Il termine β è stato invece calcolato facendo semplicemente la media, per
ogni settore di alta tensione, del contenuto dei vari bin dell’istogramma in
Figura 5.18

B.6.3 Correzioni a livello di cluster

Abbiamo in seguito considerato correzioni del secondo ordine, al livello del
cluster. Infatti, considerando la misura finita delle celle dell’EMEC, sciami
il cui baricentro non è ben al centro della cellula centrale del cluster saranno
contenuti in maniera meno efficace, con conseguente perdita di energia. Dopo
aver applicato le correzioni a livello di celle ci aspettiamo un andamento
parabolico della risposta energetica, con un massimo nel centro della cella.

Già in Figura 5.24 è evidente come l’andamento parabolico sopra citato
valga solo per alcune celle. Altri effetti, come la combinazione dei due α o
come il fatto di non poter creare cluster di 9 celle, alterano l’uniformità
della risposta allo stesso ordine di grandezza. L’impossibilità di trovare
un’andamento parabolico centrato nel mezzo di ogni cella è evidenziata in
Figura5.26.
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Correzioni paraboliche possono essere implementate nella ruota esterna,
dotata di granularità più fine; per quanto riguarda la ruota interna, abbiamo
riscontrato lo stesso comportamento anche nel TB del 2002 (Figura 5.25).

Cercare di separare tutti i vari contributi del secondo ordine non avrebbe
portato grandi vantaggi, perciò abbiamo optato per assorbire i vari contributi
correggendo la risposta in energia con un fit dato da un polinomio di terzo
grado (Figura 5.27).

Usando i parametri di questo fit, abbiamo costruito un istogramma monodi-
mensionale per ogni scan analizzato,con la differenza tra il valore di energia
calcolato e quello dato dal fit. Per tutti gli scan si trova una distribuzione
di punti con RMS dell’ordine al massimo dell’1% (da Figura 5.28 a Figura
5.31).

B.7 Risoluzione Spaziale

L’ultimo capitolo di questa tesi è stato dedicato alla risoluzione spaziale della
ruota interna dell’EMEC con l’obiettivo di capire con che precisione il nostro
calorimetro possa rivelare la posizione in cui le particelle lo colpiscono.

I risultati riguardanti la risoluzione in φ saranno inoltre usati dal gruppo
ATLAS di Cracovia per uno studio sulla luminosità usando una coppia
elettrone-positrone prodotta ad un angolo φ = 180 nell’end cap: per questo
motivo è necessaria una buona conoscenza della risoluzione spaziale.

Durante il TB del 2004 sono state utilizzate 6 Beam Profile Chambers
(BPC) lungo il fascio di particelle per avere, evento per evento, la posizione
della particella nel piano XY .

B.7.1 Risoluzione in φ

Sono state utilizzate run in cui il fascio colpisce il modulo del rivelatore nel
suo asse di simmetria Y per poter avere la coordinata φ e la coordinata X
delle BPC nella stessa direzione. Per ottenere la risoluzione in φ abbiamo
inserito in un istogramma bidimensionale la posizione X delle BPC in fun-
zione del valore φ del baricentro del cluster di 9 celle per vedere il loro grado
di correlazione. Quindi si è proceduto al fitting ed in seguito si è costruito
un istogramma unidimensionale con la differenza tra il valore di φ dato dal
fit e quello calcolato (Figura 6.3).

Ciò che si ottiene è la risoluzione globale, non quella intrinseca del calorime-
tro. Infatti, come mostrato in Formula 6.1 il nostro risultato è la somma di
tre termini

• Risoluzione intrinseca del calorimetro
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• Contributo dovuto a effetti di multiple scattering : le particelle del fascio
interagiscono con le particelle dell’aria che si trova tra le BPC e il
criostato.

• Risoluzione intrinseca delle BPC.

Il nostro obiettivo è quello di estrarre la risoluzione intrinseca del rivelatore:
bisogna dunque misurare o calcolare gli altri contributi.

La prima analisi riguarda il comportamento della risoluzione globale in φ
al variare della coordinata η, usando run di elettroni a 120 GeV. Si notano
immediatamente (Figura 6.4) le seguenti caratteristiche:

• Per tutte le BPC la σglobale aumenta con η in maniera pressoché lineare,
con l’eccezione della cella 2.5 < η < 2.6. Quest’ultimo fatto può essere
spiegato ricordando che per un fascio incidente in questa cella non è
possibile creare un cluster di 9 celle, con conseguente perdita di energia
e peggioramento della risoluzione.

• La σglobale è minore per la BPC più vicina al calorimetro, a causa di
minori effetti di multiple scattering. Con lo stesso ragionamento si può
spiegare il fatto che la σglobale sia identica per ogni coppia di BPC: in
Tabella 6.1 osserviamo come tra le BPC di ciascuna coppia ci siano
pochi centimetri.

In seguito si è analizzato l’andamento della risoluzione in φ in funzione
dell’energia, a η fissato, utilizzando le run in Tabella 6.2. Il metodo usato per
calcolare la σglobale è lo stesso di quello usato precedentemente, ma i valori
ottenuti sono stati fittati usando la funzione 6.2:quando usiamo l’energia
nella determinazione della posizione, ci si attende che la risoluzione spaziale
vari come quella in energia (Figure 6.5 e 6.6). Tuttavia si osserva che, anche
per la BPC più vicina al rivelatore, il fit ottenuto non è perfetto, avendo un
termine costante negativo. La situazione migliora decisamente se fittiamo il
grafico con una funzione del tipo 1/E (Figure 6.7 e 6.8).

B.7.2 Risoluzione intrinseca delle BPC e contributi di

Multiple Scattering.

Per calcolare la risoluzione intrinseca delle BPC abbiamo sfruttato il fatto
che esse sono raggruppate in coppie (vedi Tabella 6.1) e che, su tali dis-
tanze, gli effetti di multiple scattering sono trascurabili. Inoltre, come si
evince dalle loro caratteristiche tecniche riportate in [21], le stesse BPC non
contribuiscono significativamente al multiple scattering.
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La resoluzione intrinseca delle BPC è totalmente trascurabile nel caso di
fasci di elettroni a bassa energia mentre il suo contributo nella somma in
quadratura 6.1 per alte energie (120 GeV) raggiunge il 4%.

Per vedere come gli effetti di multiple scattering influenzino effettiva-
mente la misura della risoluzione, si è considerato come la correlazione, e
di conseguenza la risoluzione, tra la BPC più vicina al rivelatore e quella
più lontana cambi al variare dell’energia del fascio incidente: in Figura 6.11
si può osservare che, a distanza fissata, la risoluzione ha l’andamento 1/E
tipico del multiple scattering.

Tuttavia vi è un altro effetto, non preso in considerazione nella Formula
6.1, che tende a inficiare la risoluzione; infatti, se il multiple scattering fosse
l’unica causa della degradazione della risoluzione, avremmo dovuto ottenere
σBPC0,BPC5 = σBPC0,BPC3 ⊕ σBPC3,BPC5. Invece sottraendo i contributi di
multiple scattering alla σglobale non si ottiene la σ della risoluzione intrinseca
delle BPC ma un termine aggiuntivo che cresce linearmente con la distanza e
che può essere interpretato come un termine di divergenza del fascio (Figura
6.12). In ogni caso, usando la BPC5 (che dista solo 2.2 metri dal calorimetro)
in tutte le analisi, si può considerare questo termine trascurabile.

La risoluzione intrinseca nella coordinata φ della ruota interna dell’EMEC
risulta quindi essere il termine dominante della σglobale ed ha un valore dell’or-
dine di 1 mrad.

B.7.3 Risoluzione in η

La granularità finita del rivelatore dà origine a uno spostamento sistematico
della misura del centro dello sciame elettromagnetico poiché i valori di η e φ
di ogni singola cella sono quelli del suo centro. Dal momento che abbiamo
lavorato sempre con un cluster di 9 celle, gli effetti della granularità finita
sono attenuati (Figure 6.13 e 6.14).

In linea di principio si sarebbe dovuto ottenere lo stesso effetto anche in
precedenza, nello studio della risoluzione in φ, ma la geometria a fisarmonica
dell’EMEC permette una migliore condivisione dell’energia tra cellule confi-
nanti in φ, rendendo trascurabile tale effetto.

La risoluzione in η che otteniamo è dell’ordine di 1 mη, anche se l’anda-
mento al variare della pseudorapidità è meno evidente rispetto al caso φ.
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