Statistics Tool box
 For Use with MATLAB ${ }^{\text {® }}$

Computation

Visualization

Programming

The
MATH
WORKS
User's Guide
Inc.
Version 2

How to Contact The MathWorks:

508-647-7000	Phone
508-647-7001	Fax
The MathWorks, Inc. 24 Prime Park Way Natick, MA 01760-1500	Mail

./www.mathworks.com
ftp.mathworks.com
comp.soft-sys.matlab
Web
Anonymous FTP server Newsgroup
support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
subscribe@mathworks.com
service@mathworks.com
info@mathworks.com

Technical support

Product enhancement suggestions
Bug reports
Documentation error reports
Subscribing user registration
Order status, license renewals, passcodes
Sales, pricing, and general information

Statistics Tool box U ser's Guide

© COPYRIGHT 1993-1999 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S. Government, the following shall apply: (a) For units of the Department of Defense: the Government shall have only the rights specified in the license under which the commercial computer software or commercial software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclosure are as set forth in Clause 52.227-19 (c)(2) of the FAR.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: September 1993 First printing Version 1
March 1996 Second printing Version 2
J anuary 1997 Third printing For MATLAB 5
May 1997
J anuary 1999 Revised for Version 2.1.2 (Release 11) (online only)

Preface

Before You Begin vi
What Is the Statistics Tool box? vi
How to Use This Guide vi
Mathematical Notation vii
Typographical Conventions viii
Tutorial
1
Introduction 1-2
Primary Topic Areas 1-2
Probability Distributions 1-2
Parameter Estimation 1-3
Descriptive Statistics 1-3
Cluster Analysis 1-3
Linear Models 1-3
Nonlinear Models 1-3
Hypothesis Tests 1-3
Multivariate Statistics 1-3
Statistical Plots 1-3
Statistical Process Control (SPC) 1-4
Design of Experiments (DOE) 1-4
Probability Distributions 1-5
Overview of the Functions 1-6
Probability Density Function (pdf) 1-6
Cumulative Distribution F unction (cdf) 1-7
Inverse Cumulative Distribution Function 1-7
Random Numbers 1-9
Mean and Variance 1-11
Overview of the Distributions 1-12
Beta Distribution 1-13
Binomial Distribution 1-15
Chi-Square (χ^{2}) Distribution 1-17
Noncentral Chi-Square Distribution 1-18
Discrete Uniform Distribution 1-20
Exponential Distribution 1-21
F Distribution 1-23
Noncentral F Distribution 1-24
Gamma Distribution 1-25
Geometric Distribution 1-27
Hypergeometric Distribution 1-28
Lognormal Distribution 1-29
Negative Binomial Distribution 1-30
Normal Distribution 1-31
Poisson Distribution 1-33
Rayleigh Distribution 1-35
Student's t Distribution 1-36
Noncentral t Distribution 1-37
Uniform (Continuous) Distribution 1-38
Weibull Distribution 1-39
Descriptive Statistics 1-42
Measures of Central Tendency (Location) 1-42
Measures of Dispersion 1-43
Functions for Data with Missing Values (NaNs) 1-45
Percentiles and Graphical Descriptions 1-46
The Bootstrap 1-47
Cluster Analysis 1-50
Terminology and Basic Procedure 1-50
Finding the Similarities Between Objects 1-51
Returning Distance Information 1-53
Defining the Links Between Objects 1-53
Evaluating Cluster Formation 1-56
Verifying the Cluster Tree 1-56
Getting M ore Information about Cluster Links 1-57
Creating Clusters 1-61
Finding the Natural Divisions in the Dataset 1-61
Specifying Arbitrary Clusters 1-62
Linear Models 1-65
One-Way Analysis of Variance (ANOVA) 1-65
Two-Way Analysis of Variance (ANOVA) 1-67
Multiple Linear Regression 1-69
Example 1-72
Quadratic Response Surface Models 1-73
Exploring Graphs of Multidimensional Polynomials 1-74
Stepwise Regression 1-75
Stepwise Regression Interactive GUI 1-75
Stepwise Regression Plot 1-76
Stepwise Regression Diagnostics Figure 1-76
Nonlinear Regression Models 1-79
Mathematical Form 1-79
Nonlinear Modeling Example 1-79
Fitting the H ougen-Watson Model 1-80
Confidence Intervals on the Parameter Estimates 1-82
Confidence Intervals on the Predicted Responses 1-83
An Interactive GUI for Nonlinear Fitting and Prediction 1-83
Hypothesis Tests 1-85
Terminology 1-85
Assumptions 1-86
Example $1-87$
Multivariate Statistics 1-91
Principal Components Analysis 1-91
Example 1-92
The Principal Components (First Output) 1-95
The Component Scores (Second Output) 1-95
The Component Variances (Third Output) 1-99
Hotelling's T^{2} (Fourth Output) 1-102
Statistical Plots 1-103
Box Plots 1-103
Normal Probability Plots 1-104
Quantile-Quantile Plots 1-106
Weibull Probability Plots 1-108
Statistical Process Control (SPC) 1-110
Control Charts 1-110
Xbar Charts 1-110
S Charts 1-111
EWMA Charts 1-112
Capability Studies 1-113
Design of Experiments (DOE) 1-115
Full Factorial Designs 1-116
Fractional Factorial Designs 1-117
D-Optimal Designs 1-118
Generating D-Optimal Designs 1-118
Augmenting D-Optimal Designs 1-121
Designing Experiments with Uncontrolled Inputs 1-124
Demos 1-125
The disttool Demo 1-125
The polytool Demo 1-126
The randtool Demo 1-130
The rsmdemo Demo 1-131
Part 1 1-132
Part 2 1-133
References 1-134
Reference

Preface

Before You Begin vi
What Is the Statistics Tool box? vi
How to Use This Guide vi
Mathematical Notation vii
Typographical Conventions viii

Before You Begin

This introduction describes how to begin using the Statistics Tool box. It explains how to use this guide, and points you to additional books for tool box installation information.

What Is the Statistics Toolbox?

The Statistics Tool box is a collection of tools built on the MATLAB ${ }^{\circledR}$ numeric computing environment. The tool box supports a wide range of common statistical tasks, from random number generation, to curve fitting, to design of experiments and statistical process control. The tool box provides two categories of tools:

- Building-block probability and statistics functions
- Graphical, interactive tools

The first category of tools is made up of functions that you can call from the command line or from your own applications. Many of these functions are MATLAB M-files, series of MATLAB statements that implement specialized Statistics al gorithms. Y ou can view theMATLAB codefor thesefunctions using the statement
type function_name
You can change the way any tool box function works by copying and renaming the M-file, then modifying your copy. You can also extend thetoolbox by adding your own M-files.

Secondly, the tool box provides a number of interactivetools that let you access many of the functions through a graphical user interface (GUI). Together, the GUI-based tools provide an environment for polynomial fitting and prediction, as well as probability function exploration.

How to Use This Guide

If you are a new user begin with Chapter 1, Tutorial. This chapter introduces the MATLAB statistics environment through the tool box functions. It describes the functions with regard to particular areas of interest, such as probability distributions, linear and nonlinear models, principal components analysis, design of experiments, statistical process control, and descriptive statistics.

All toolbox users should use Chapter 2, Reference, for information about specific tools. F or functions, reference descriptions include a synopsis of the function's syntax, as well as a complete explanation of options and operation. Many reference descriptions also include examples, a description of the function's algorithm, and references to additional reading material.

Use this guide in conjunction with the software to learn about the powerful features that MATLAB provides. Each chapter provides numerous examples that apply the toolbox to representative statistical tasks.

The random number generation functions for various probability distributions are based on all the primitive functions, randn and rand. There are many examples that start by generating data using random numbers. To duplicate the results in these examples, first execute the commands below.

```
seed = 931316785;
rand('seed',seed);
randn('seed',seed);
```

Y ou might want to save these commands in an M-file script called init.m. Then, instead of three separate commands, you need only type init.

Mathematical Notation

This manual and the Statistics Tool box functions use the following mathematical notation conventions.

β	Parameters in a linear model.
$E(x)$	Expected value of $x . \quad:(x)=\int t f(t) d$
$f(x \mid a, b)$	Probability density function. x is the independent variable; a and b are fixed parameters.
$F(x \mid a, b)$	Cumulative distribution function.
$I([a, b])$	Indicator function. In this example the function takes the value 1 on the closed interval from a to b and is 0 el sewhere.
p and q	p is the probability of some event. q is the probability of $\sim p$, so $q=1-p$.

Typographical Conventions

To Indicate	This Guide Uses	Example
Example code	Monospace type (Use Code tag.)	To assign the value 5 to A, enter $\mathrm{A}=5$
Function names/syntax	Monospace type (Use Code tag.) For syntax lines, use paragraph tag Syntax.	The cos function finds the cosine of each array element. Syntax line example is MLGetVar ML_var_name
Keys	Boldface with an initial capital letter (Use Menu-Bodytext tag.)	Press the Return key.

In addition, some words in our syntax lines are shown within single quotation marks (sometimes double). These marks area MATLAB requirement and must be typed. For example,
dir dirname
f = hex2num('s')
or
f ="pressure"

Tutorial

Introduction 1-2
Probability Distributions 1-5
Descriptive Statistics 1-42
Cluster Analysis 1-50
Linear Models 1-65
Nonlinear Regression Models 1-79
Hypothesis Tests 1-85
Multivariate Statistics 1-91
Statistical Plots 1-103
Statistical Process Control (SPC) 1-110
Design of Experiments (DOE) 1-115
Demos 1-125
References 1-134

Introduction

The Statistics Tool box, for use with MATLAB, supplies basic statistics capability on the level of a first course in engineering or scientific statistics. The statistics functions it provides are building blocks suitable for use inside other analytical tools.

Primary Topic Areas

The Statistics Tool box has more than 200 M-files, supporting work in the topical areas below:

- Probability distributions
- Descriptive statistics
- Cluster Analysis
- Linear models
- Nonlinear models
- Hypothesis tests
- Multivariate statistics
- Statistical plots
- Statistical Process Control
- Design of Experiments

Probability Distributions

The Statistics Tool box supports 20 probability distributions. For each distribution there are five associated functions. They are:

- Probability density function (pdf)
- Cumulative distribution function (cdf)
- Inverse of the cumulative distribution function
- Random number generator
- Mean and variance as a function of the parameters

For data driven distributions (beta, binomial, exponential, gamma, normal, Poisson, uniform and Weibull), the Statistics Toolbox has functions for computing parameter estimates and confidence intervals.

Descriptive Statistics

The Statistics Toolbox provides functions for describing the features of a data sample. These descriptive statistics include measures of location and spread, percentile estimates and functions for dealing with data having missing values.

Cluster Analysis

The Statistics Tool box provides functions that allow you to divide a set of objects into subgroups, each having members that are as much alike as possible. This process is called cluster analysis.

Linear Models

In the area of linear models the Statistics Tool box supports one-way and two-way analysis of variance (ANOVA), multiple linear regression, stepwise regression, response surface prediction, and ridge regression.

Nonlinear Models

F or nonlinear models there are functions for parameter estimation, interactive prediction and visualization of multidimensional nonlinear fits, and confidence intervals for parameters and predicted values.

Hypothesis Tests

There are al so functions that do the most common tests of hypothesis - t-tests and Z-tests.

Multivariate Statistics

The Statistics Tool box supports methods in Multivariate Statistics, including Principal Components Analysis and Linear Discriminant Analysis.

Statistical Plots

The Statistics Tool box adds box plots, normal probability plots, Weibull probability plots, control charts, and quantile-quantile plots to the arsenal of graphs in MATLAB. There is also extended support for polynomial curvefitting and prediction.

Statistical Process Control (SPC)

For SPC therearefunctions for plotting common control charts and performing process capability studies.

Design of Experiments (DOE)

The Statistics Tool box supports both factorial and D-optimal design. There are functions for generating designs, augmenting designs and optimally assigning units with fixed covariates.

Probability Distributions

Probability distributions arise from experiments where the outcome is subject to chance. The nature of the experiment dictates which probability distributions may be appropriate for modeling the resulting random outcomes. There are two types of probability distributions - continuous and discrete.

Continuous (data)	Continuous (statistics)	Discrete
Beta	Chi-square	Binomial
Exponential	Noncentral Chi-square	Discrete Uniform
Gamma	F	Geometric
Lognormal	Noncentral F	Hypergeometric
Normal	t	Negative Binomial
Rayleigh	Noncentral t	Poisson
Uniform		
Weibull		

Suppose you are studying a machine that produces videotape. One measure of the quality of the tape is the number of visual defects per hundred feet of tape. The result of this experiment is an integer, since you cannot observe 1.5 defects. To model this experiment you should use a discrete probability distribution.

A measure affecting the cost and quality of videotape is its thickness. Thick tape is more expensive to produce, while variation in the thickness of the tape on the reel increases the likelihood of breakage. Suppose you measure the thickness of the tape every 1000 feet. The resulting numbers can take a continuum of possible values, which suggests using a continuous probability distribution to model the results.

Using a probability model does not allow you to predict the result of any individual experiment but you can determine the probability that a given outcome will fall inside a specific range of values.

Overview of the Functions

MATLAB provides five functions for each distribution:

- Probability density function (pdf)
- Cumulative distribution function (cdf)
- Inverse cumulative distribution function
- Random number generator
- Mean and variance

This section discusses each of these functions.

Probability Density Function (pdf)

The probability density function has a different meaning depending on whether the distribution is discrete or continuous.

For discrete distributions, the pdf is the probability of observing a particular outcome. In our videotape example, the probability that there is exactly one defect in a given hundred feet of tape is the value of the pdf at 1.

Unlike discrete distributions, the pdf of a continuous distribution at a value is not the probability of observing that value. For continuous distributions the probability of observing any particular value is zero. To get probabilities you must integrate the pdf over an interval of interest. F or examplethe probability of the thickness of a videotape being between one and two millimeters is the integral of the appropriate pdf from one to two.

A pdf has two theoretical properties:

- The pdf is zero or positive for every possible outcome.
- The integral of a pdf over its entire range of values is one.

A pdf is not a singlefunction. Rather a pdf is a family of functions characterized by one or more parameters. Once you choose (or estimate) the parameters of a pdf, you have uniquely specified the function.

The pdf function call has the same general format for every distribution in the Statistics Tool box. The following commands illustrate how to call the pdf for the normal distribution.

```
x = [-3:0.1:3];
f = normpdf(x,0,1);
```

The variable f contains the density of the normal pdf with parameters 0 and 1 at the values in x . The first input argument of every pdf is the set of values for which you want to evaluate the density. Other arguments contain as many parameters as are necessary to define the distribution uniquely. The normal distribution requires two parameters, a location parameter (the mean, μ) and a scale parameter (the standard deviation, σ).

Cumulative Distribution Function (cdf)

If f is a probability density function, the associated cumulative distribution function F is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

The cdf of a value $x, F(x)$, is the probability of observing any outcome less than or equal to x.

A cdf has two theoretical properties:

- The cdf ranges from 0 to 1 .
- If $y>x$, then the cdf of y is greater than or equal to the cdf of x.

The cdf function call has the same general format for every distribution in the Statistics Tool box. The following commands illustratehow to call the cdf for the normal distribution:

$$
\begin{aligned}
& x=[-3: 0.1: 3] ; \\
& p=\operatorname{normcdf}(x, 0,1) ;
\end{aligned}
$$

The variable p contains the probabilities associated with the normal cdf with parameters 0 and 1 at the values in x . The first input argument of every cdf is the set of values for which you want to evaluate the probability. Other arguments contain as many parameters as are necessary to define the distribution uniquely.

Inverse Cumulative Distribution Function

The inverse cumulative distribution function returns critical values for hypothesis testing given significance probabilities. To understand the
relationship between a continuous cdf and its inverse function, try the following:

```
x = [-3:0.1:3];
xnew = norminv(normcdf(x,0,1),0,1);
```

How does xnew compare with x? Conversely, try this:

```
p = [0.1:0.1:0.9];
pnew = normcdf(norminv(p,0,1),0,1);
```

How does pnew compare with p?
Calculating the cdf of values in the domain of a continuous distribution returns probabilities between zero and one. Applying the inverse cdf to these probabilities yields the original values.

For discrete distributions, the relationship between a cdf and its inverse function is more complicated. It is likely that there is no x value such that the cdf of x yields p. In these cases the inverse function returns the first value x such that the cdf of x equals or exceeds p. Try this:

```
x = [0:10];
y = binoinv(binocdf(x,10,0.5),10,0.5);
```

How does x compare with y ?
The commands below show the problem with going the other direction for discrete distributions.

```
p = [0.1:0.2:0.9];
pnew = binocdf(binoinv(p,10,0.5),10,0.5)
pnew =
```

0.1719
0.3770
0.6230
0.8281
0.9453

The inverse function is useful in hypothesis testing and production of confidence intervals. Here is the way to get a 99% confidence interval for a normally distributed sample.

```
p = [0.005 0.995];
x = norminv(p,0,1)
x =
    -2.5758 2.5758
```

The variablex contains the values associated with the normal inverse function with parameters 0 and 1 at the probabilities in p. The difference $p(2)-p(1)$ is 0.99. Thus, the values in x define an interval that contains 99% of the standard normal probability.

The inverse function call has the same general format for every distribution in the Statistics Tool box. The first input argument of every inverse function is the set of probabilities for which you want to evaluate the critical values. Other arguments contain as many parameters as are necessary to define the distribution uniquely.

Random Numbers

The methods for generating random numbers from any distribution all start with uniform random numbers. Once you have a uniform random number generator, you can produce random numbers from other distributions either directly or by using inversion or rejection methods.

Direct. Direct methods flow from the definition of the distribution.
As an example, consider generating binomial random numbers. You can think of binomial random numbers as the number of heads in n tosses of a coin with probability p of a heads on any toss. If you generaten uniform random numbers and count the number that are greater than p, the result is binomial with parameters n and p .

Inversion. The inversion method works due to a fundamental theorem that relates the uniform distribution to other continuous distributions.
If F is a continuous distribution with inverse F^{-1}, and U is a uniform random number, then F-1(U) has distribution F.

So, you can generate a random number from a distribution by applying the inverse function for that distribution to a uniform random number. Unfortunately, this approach is usually not the most efficient.

Rejection. The functional form of some distributions makes it difficult or time consuming to generate random numbers using direct or inversion methods. Rejection methods can sometimes provide an elegant solution in these cases.

Suppose you want to generate random numbers from a distribution with pdff. To use rejection methods you must first find another density, g , and a constant, c, so that the inequality below holds.

$$
f(x) \leq c g(x) \forall x
$$

You then generate the random numbers you want using the following steps:
1 Generate a random number x from distribution G with density g.
2 Form the ratio $r=\frac{c g(x)}{f(x)}$
3 Generate a uniform random number u.
4 If the product of u and r is less than one, return x.
5 Otherwise repeat steps one to three.
For efficiency you need a cheap method for generating random numbers from G and the scalar, c, should be small. The expected number of iterations is c.

Syntax for Random Number Functions. You can generate random numbers from each distribution. This function provides a single random number or a matrix of random numbers, depending on the arguments you specify in the function call.

F or example, here is the way to generate random numbers from the beta distribution. F our statements obtain random numbers: the first returns a
single number, the second returns a 2-by-2 matrix of random numbers, and the third and fourth return 2-by-3 matrices of random numbers.

```
a = 1;
b = 2;
c = [.1 . 5; 1 2];
d = [.25 .75; 5 10];
m = [2 3];
nrow = 2;
ncol = 3;
r1 = betarnd(a,b)
r1 =
    0.4469
r2 = betarnd(c,d)
r2 =
    0.8931 0.4832
    0.1316 0.2403
r3 = betarnd(a,b,m)
r3 =
    0.4196 0.6078 0.1392
    0.0410 0.0723 0.0782
r4 = betarnd(a,b,nrow,ncol)
r4 =
\begin{tabular}{lll}
0.0520 & 0.3975 & 0.1284 \\
0.3891 & 0.1848 & 0.5186
\end{tabular}
```


Mean and Variance

The mean and variance of a probability distribution are generally simple functions of the parameters of the distribution. The Statistics Tool box functions ending in stat all produce the mean and variance of the desired distribution given the parameters.

The example shows a contour plot of the mean of the Weibull distribution as a function of the parameters.

```
x = (0.5:0.1:5);
y = (1:0.04:2);
[X,Y] = meshgrid(x,y);
Z = weibstat(X,Y);
[c,h] = contour(x,y,z,[0.4 0.6 1.0 1.8]);
clabel(c);
```


Overview of the Distributions

The Statistics Tool box supports 20 probability distributions. These are:

- Beta
- Binomial
- Chi-square
- Noncentral Chi-square
- Discrete Uniform
- Exponential
- F
- Noncentral F
- Gamma
- Geometric
- Hypergeometric
- Lognormal
- Negative Binomial
- Normal
- Poisson
- Rayleigh
- Student's t
- Noncentral t
- Uniform
- Weibull

This section gives a short introduction to each distribution.

Beta Distribution

Background. The beta distribution describes a family of curves that are unique in that they are nonzero only on the interval [01]. A more general version of the function assigns parameters to the end-points of the interval.

The beta cdf is the same as the incomplete beta function.
The beta distribution has a functional relationship with the distribution. If Y is an observation from Student's t distribution with v degrees of freedom then the following transformation generates X, which is beta distributed:

$$
\begin{aligned}
X & =\frac{1}{2}+\frac{1}{2} \frac{Y}{\sqrt{v+Y^{2}}} \\
\text { if: } Y & \sim t(v) \text { then } \quad X \sim \beta\left(\frac{v}{2}, \frac{v}{2}\right)
\end{aligned}
$$

The Statistics Tool box uses this relationship to compute values of thet cdf and inverse function as well as generating t distributed random numbers.

Mathematical Definition. The beta pdf is:

$$
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} l_{(0,1)}(x)
$$

Parameter Estimation. Suppose you are collecting data that has hard lower and upper bounds of zero and one respectively. Parameter estimation is the process of determining the parameters of the beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the beta pdf. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the samplevalues (thexs) are already observed. So they are the fixed constants. The variables are the unknown parameters. Maximum likelihood estimation (MLE) involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the parameters of the beta distribution. Here is an example using random numbers from the beta distribution with $a=5$ and $b=0.2$.

```
r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)
phat =
    4.5330 0.2301
pci =
    2.8051 0.1771
    6.2610 0.2832
```

The MLE for the parameter, a is 4.5330 compared to the true value of 5 . The 95% confidence interval for a goes from 2.8051 to 6.2610 , which includes the true value.

Similarly the MLE for the parameter, b is 0.2301 compared to the true value of 0.2. The 95% confidence interval for b goes from 0.1771 to 0.2832 , which also includes the true value.

Of course in this made-up example we know the "true value." In experimentation we do not.

Example and Plot. The shape of the beta distribution is quite variable depending on the values of the parameters, as illustrated by this plot.

The constant pdf (the flat line) shows that the standard uniform distribution is a special case of the beta distribution.

Binomial Distribution

Background. The binomial distribution models the total number of successes in repeated trials from an infinite population under the following conditions:

- Only two outcomes are possible on each of n trials.
- The probability of success for each trial is constant.
- All trials are independent of each other.

J ames Bernoulli derived the binomial distribution in 1713 (Ars Conjectandi). Earlier, Blaise Pascal had considered the special case where $p=1 / 2$.

Mathematical Definition. The binomial pdf is:

$$
y=f(x \mid n, p)=\binom{n}{x} p^{x} q^{(1-x)} I_{(0,1, \ldots, n)}(x)
$$

where: $\binom{n}{x}=\frac{n!}{x!(n-x)!}$ and $q=1-p$.

The binomial distribution is discrete. For zero and for positive integers less than n, the pdf is nonzero.

Parameter Estimation. Suppose you are collecting data from a widget manufacturing process, and you record the number of widgets within specification in each batch of 100. Y ou might be interested in the probability that an individual widget is within specification. Parameter estimation is the process of determining the parameter, p, of the binomial distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the binomial pdf above. But for the pdf, the parameters (n and p) are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (thexs) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the value of p that give the highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the parameters of the binomial distribution. Here is an example using random numbers from the binomial distribution with $n=100$ and $p=0.9$.

```
r = binornd(100,0.9)
r =
    88
[phat, pci] = binofit(r,100)
phat =
    0.8800
pci =
    0.7998
    0.9364
```

The MLE for the parameter, p is 0.8800 compared to the true value of 0.9 . The 95% confidence interval for p goes from 0.7998 to 0.9364 , which includes the true value.

Of course in this made-up example we know the "true value" of p.

Example and Plot. The following commands generate a plot of the binomial pdf for $n=10$ and $p=1 / 2$.
$x=0: 10 ;$
$y=$ binopdf(x,10,0.5);
plot($x, y,{ }^{\prime}+$ ')

Chi-Square $\left(\chi^{2}\right)$ Distribution

Background. The χ^{2} distribution is a special case of the gamma distribution where $b=2$, in the equation for gamma distribution below.

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

The χ^{2} distribution gets special attention because of its importance in normal sampling theory. If a set of n observations are normally distributed with variance σ^{2}, and s^{2} is the sample standard deviation, then:

$$
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\sigma^{2}} \sim \chi^{2}(\mathrm{n}-1)
$$

The Statistics Tool box uses the above relationship to calculate confidence intervals for the estimate of the normal parameter σ^{2} in the function normfit.

Mathematical Definition. The χ^{2} pdf is:

$$
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{\frac{v}{2}} \Gamma(v / 2)}
$$

Example and Plot. The χ^{2} distribution is skewed to the right especially for few degrees of freedom (v). The plot shows the χ^{2} distribution with four degrees of freedom.

Noncentral Chi-Square Distribution

Background. The χ^{2} distribution is actually a simple special case of the noncentral chi-square distribution. One way to generaterandom numbers with a χ^{2} distribution (with v degrees of freedom) is to sum the squares of v standard normal random numbers (mean equal to zero.)
What if we allow the normally distributed quantities to have a mean other than zero? The sum of squares of these numbers yields the noncentral chi-square distribution. The noncentral chi-square distribution requires two parameters: the degrees of freedom and the noncentrality. The noncentrality parameter is the sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and signal processing. Theliterature in these areas may refer to it as the Ricean or generalized Rayleigh distribution.

Mathematical Definition. There are many equival ent formulas for the noncentral chi-square distribution function. One formulation uses a modified Bessel function of the first kind. Another uses the generalized Laguerre polynomials. The Statistics Tool box computes the cumulative distribution function values using a weighted sum of χ^{2} probabilities with the weights equal to the probabilities of a Poisson distribution. The Poisson parameter is one-half of the noncentrality parameter of the noncentral chi-square.

$$
F(x \mid v, \delta)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
$$

Example and Plot. The following commands generate a plot of the noncentral chi-square pdf.

```
x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'--',x,p1,'-')
```


Discrete Uniform Distribution

Background. Thediscrete uniform distribution is a simpledistribution that puts equal weight on the integers from one to N .

Mathematical Definition. The discrete uniform pdf is:

$$
y=f(x \mid N)=\frac{1}{N} I_{(1, \ldots, N)}(x)
$$

Example and Plot. As for all discrete distributions, the cdf is a step function. The plot shows the discrete uniform cdf for $\mathrm{N}=10$.

```
x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])
```


To pick a random sample of 10 from a list of 553 items:

```
numbers = unidrnd(553,1,10)
numbers =
```


Exponential Distribution

Background. Like the chi-square, the exponential distribution is a special case of the gamma distribution (obtained by setting a $=1$ in the equation below.)

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

The exponential distribution is special because of its utility in modeling events that occur randomly over time. The main application area is in studies of lifetimes.

Mathematical Definition. The exponential pdf is:

$$
y=f(x \mid \mu)=\frac{1}{\mu} e^{-\frac{x}{\mu}}
$$

Parameter Estimation. Suppose you are stress testing light bulbs and collecting data on their lifetimes. You assume that these lifetimes follow an exponential distribution. You want to know how long you can expect the average light bulb to last. Parameter estimation is the process of determining the parameters of the exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the beta pdf on the previous page. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the xs) are al ready observed. So they are the fixed constants. The variables are the unknown parameters. MLE invol ves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function expfit returns the MLEs and confidence intervals for the parameters of the exponential distribution. Here is an example using random numbers from the exponential distribution with $\mu=700$.

```
lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)
muhat =
    672.8207
muci =
```

 547.4338
 810.9437
 The MLE for the parameter, μ is 672 compared to the true value of 700. The 95% confidence interval for μ goes from 547 to 811, which includes the true value.

In our life tests we do not know the true value of μ so it is nice to have a confidence interval on the parameter to give a range of likely values.

Example and Plot. F or exponentially distributed lifetimes, the probability that an item will survive an extra unit of time is independent of the current age of the item. The example shows a specific case of this special property.

```
l = 10:10:60;
lpd = l+0.1;
deltap = (expcdf(lpd,50)-expcdf(1,50))./(1-expcdf(1,50))
deltap =
```

 0.0020
 0.0020
 0.0020
 0.0020
 0.0020
 0.0020

The plot shows the exponential pdf with its parameter (and mean), lambda, set to two.

F Distribution

Background. The F distribution has a natural relationship with the chi-square distribution. If χ_{1} and χ_{2} are both chi-square with v_{1} and v_{2} degrees of freedom respectively, then the statistic, F is F distributed.

$$
\mathrm{F}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=\frac{\frac{\chi_{1}}{\mathrm{v}_{1}}}{\frac{\chi_{2}}{\mathrm{v}_{2}}}
$$

The two parameters, v_{1} and v_{2}, are the numerator and denominator degrees of freedom. That is, v_{1} and v_{2} are the number of independent pieces information used to calculate χ_{1} and χ_{2} respectively.

Mathematical Definition. The pdf for the F distribution is:

$$
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x^{\frac{v_{1}+v_{2}}{2}}\right.}
$$

Example and Plot. The most common application of the F distribution is in standard tests of hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers and is skewed to the right.

Noncentral F Distribution

Background. As with the χ^{2} the F distribution is a special case of the noncentral F distribution. The F distribution is the result of taking the ratio of two χ^{2} random variables each divided by its degrees of freedom.
If the numerator of the ratio is a noncentral chi-square random variable divided by its degrees of freedom, the resulting distribution is the noncentral F.

The main application of the noncentral F distribution is to cal culate the power of a hypothesis test relative to a particular alternative.

Mathematical Definition. Similarly to the noncentral chi-square, the Statistics Tool box cal culates noncentral F distribution probabilities as a weighted sum of incomplete beta function using Poisson probabilities as the weights.

$$
F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) \boldsymbol{\|}\left(\left.\frac{v_{1} \cdot x}{v_{2}+v_{1} \cdot x} \right\rvert\, \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
$$

where $I(x \mid a, b)$ is the incomplete beta function with parameters a and b.

Example and Plot. The following commands generate a plot of the noncentral F pdf.

```
x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'--',x,p1,'-')
```


Gamma Distribution

Background. The gamma distribution is a family of curves based on two parameters. The chi-square and exponential distributions, which are children of the gamma distribution, are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete gamma function:

$$
\Gamma(x \mid a, b)=\text { gammainc }\left(\frac{x}{b^{\prime}} a\right)
$$

For $b=1$ the functions are identical.
When a is large, the gamma distribution closely approximates a normal distribution with the advantage that the gamma distribution has density only for positive real numbers.

Mathematical Definition. The gamma pdf is:

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

Parameter Estimation. Suppose you are stress testing computer memory chips and collecting data on their lifetimes. You assume that these lifetimes follow a gamma distribution. Y ou want to know how long you can expect the average computer memory chip to last. Parameter estimation is the process of determining the parameters of the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the gamma pdf above. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the xs) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the parameters of the gamma distribution. Here is an example using random numbers from the gamma distribution with $a=10$ and $b=5$.

```
lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)
phat =
    10.9821 4.7258
pci =
    7.4001 3.1543
    14.5640 6.2974
```

Note phat (1) $=\hat{a}$ and phat (2) $=\hat{b}$. The MLE for the parameter, a is 10.98 compared to the true value of 10 . The 95% confidence interval for a goes from 7.4 to 14.6 , which includes the true value.

Similarly the MLE for the parameter, b is 4.7 compared to the true value of 5. The 95% confidence interval for b goes from 3.2 to 6.3, which also includes the true value.

In our life tests we do not know the true value of a and b so it is nice to have a confidence interval on the parameters to give a range of likely values.

Example and Plot. In the example the gamma pdf is plotted with the solid line. The normal pdf has a dashed line type.

```
x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'-',x,y1,'-.')
```


Geometric Distribution

Background. The geometric distribution is discrete, existing only on the nonnegative integers. It is useful for modeling the runs of consecutive successes (or failures) in repeated independent trials of a system.
The geometric distribution models the number of successes before one failure in an independent succession of tests where each test results in success or failure.

Mathematical Definition. The geometric pdf is:

$$
\begin{aligned}
& y=f(x \mid p)=p q^{x} I_{(0,1, K)}(x) \\
& \text { where } \quad q=1-p
\end{aligned}
$$

Example and Plot. Suppose the probability of a five-year-old battery failing in cold weather is 0.03 . What is the probability of starting 25 consecutive days during a long cold snap?

```
1 - geocdf(25,0.03)
ans =
    0.4530
```

The plot shows the cdf for this scenario.

```
x = 0:25;
y = geocdf(x,0.03);
stairs(x,y)
```


Hypergeometric Distribution

Background. The hypergeometric distribution models the total number of successes in a fixed size sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the number of samples or the number of possible successes, whichever is greater.

The hypergeometric distribution differs from the binomial only in that the population is finite and the sampling from the population is without replacement.

The hypergeometric distribution has three parameters that have direct physical interpretation. M is the size of the population. K is the number of
items with the desired characteristic in the population. n is the number of samples drawn. Sampling "without replacement" means that once a particular sample is chosen, it is removed from the relevant population for drawing the next sample.

Mathematical Definition. The hypergeometric pdf is:

$$
y=f(x \mid M, K, n)=\frac{\binom{K}{x}\binom{M-K}{n-x}}{\binom{M}{n}}
$$

Example and Plot. The plot shows the cdf of an experiment taking 20 samples from a group of 1000 where there are 50 items of the desired type.

```
x = 0:10;
y = hygecdf(x,1000,50,20);
stairs(x,y)
```


Lognormal Distribution

Background. The normal and lognormal distributions are closely related. If X is distributed lognormal with parameters μ and σ^{2}, then $\operatorname{In} X$ is distributed normal with parameters μ and σ^{2}.

The lognormal distribution is applicable when the quantity of interest must be positive, since $\ln X$ exists only when the random variable X is positive. E conomists often model the distribution of income using a lognormal distribution.

Mathematical Definition. The lognormal pdf is:

$$
y=f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Example and Plot. Suppose the income of a family of four in the United States follows a lognormal distribution with $\mu=\log (20,000)$ and $\sigma^{2}=1.0$. Plot the income density.

```
x = (10:1000:125010)';
y=lognpdf(x,log(20000),1.0);
plot(x,y)
set(gca,'Xtick',[0 30000 60000 90000 120000 ])
set(gca,'xticklabel',str2mat('0', '$30,000','$60,000',...
'$90,000','$120,000'))
```


Negative Binomial Distribution

Background. The geometric distribution is a special case of the negative binomial distribution (also called the Pascal distribution). The geometric distribution model s the number of successes before one failure in an independent succession of tests where each test results in success or failure.

In the negative binomial distribution the number of failures is a parameter of the distribution. The parameters are the probability of success, p, and the number of failures, r.

Mathematical Definition. The negative binomial pdf is

$$
y=f(x \mid r, p)=\binom{r+x-1}{x} p^{r} q^{x} I_{(0,1, \ldots)}(x)
$$

where $q=1-p$
Example and Plot. The following commands generate a plot of the negative binomial pdf.

```
x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'XLim',[-0.5,10.5])
```


Normal Distribution

Background. The normal distribution is a two parameter family of curves. The first parameter, μ, is the mean. The second, σ, is the standard deviation. The standard normal di stribution (written $\Phi(x)$) sets μ to zero and σ to one.
$\Phi(\mathrm{x})$ is functionally related to the error function, erf.

$$
\operatorname{erf}(\mathrm{x})=2 \Phi(\mathrm{x} \sqrt{2})-1
$$

The first use of the normal distribution was as a continuous approximation to the binomial.

The usual justification for using the normal distribution for modeling is the Central Limit Theorem which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

Mathematical Definition. The normal pdf is:

$$
y=f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Parameter Estimation. One of the first applications of the normal distribution in data analysis was modeling the height of school children. Suppose we want to estimate the mean, μ, and the variance, σ^{2}, of all the 4th graders in the United States.

We have already introduced MLEs. Another desirable criterion in a statistical estimator is unbiasedness. A statistic is unbiased if the expected value of the statistic is equal to the parameter being estimated. MLEs are not always unbiased. For any data sample, there may be more than one unbiased estimator of the parameters of the parent distribution of the sample. For instance, every sample value is an unbiased estimate of the parameter μ of a normal distribution. The Minimum Variance Unbiased Estimator (MVUE) is the statistic that has the minimum variance of all unbiased estimators of a parameter.

The MVUEs of the parameters, μ and σ^{2} for the normal distribution are the sample average and variance. The sample average is also the MLE for μ. There are two common textbook formulas for the variance.

They are:

$$
\begin{aligned}
& \text { 1) } s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& \text { 2) } s^{2}=\frac{1}{n-1} \sum_{n_{i=1}}\left(x_{i}-\bar{x}\right)^{2} \\
& \text { where } \bar{x}=\sum^{x_{i}} \frac{x_{i}}{n}
\end{aligned}
$$

Equation 1 is the maximum likelihood estimator for σ^{2}, and equation 2 is the MVUE.

The function normfit returns the MVUEs and confidence intervals for μ and σ^{2}. Here is a playful example modeling the "heights" (inches) of a randomly chosen 4th grade class.

```
height = normrnd(50,2,30,1); % Simulate heights.
[mu, s, muci, sci] = normfit(height)
mu =
    50.2025
S =
    1.7946
muci =
    49.5210
    50.8841
sci =
    1.4292
    2.4125
```

Example and Plot. The plot shows the "bell" curve of the standard normal pdf $\mu=0, \sigma=1$.

Poisson Distribution

Background. The Poisson distribution is appropriate for applications that involve counting the number of times a random event occurs in a given amount of time, distance, area, etc. Sample applications that involve Poisson distributions include the number of Geiger counter clicks per second, the number of peopl e walking into a store in an hour, and the number of flaws per 1000 feet of video tape.

The Poisson distribution is a one parameter discrete distribution that takes nonnegative integer values. The parameter, λ, is both the mean and the
variance of the distribution. Thus, as the size of the numbers in a particular sample of Poisson random numbers gets larger, so does the variability of the numbers.

As Poisson (1837) showed, the Poisson distribution is the limiting case of a binomial distribution where N approaches infinity and p goes to zero while $N p=\lambda$.

The Poisson and exponential distributions are related. If the number of counts follows the Poisson distribution, then the interval between individual counts follows the exponential distribution.

Mathematical Definition. The Poisson pdf is:

$$
y=f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda} I_{(0,1, K)}(x)
$$

Parameter Estimation. The MLE and the MVUE of thePoisson parameter, λ, is the sample mean. The sum of independent Poisson random variables is also Poisson with parameter equal to the sum of the individual parameters. The Statistics Tool box makes use of this fact to calculate confidence intervals on λ. As λ gets large the Poisson distribution can be approximated by a normal distribution with $\mu=\lambda$ and $\sigma^{2}=\lambda$. The Statistics Tool box uses this approximation for calculating confidence intervals for values of λ greater than 100.

Example and Plot. The plot shows the probability for each nonnegative integer when $\lambda=5$.

Rayleigh Distribution

Background. The Rayleigh distribution is a special case of the Weibull distribution substituting 2 for the parameter p in the equation below:

$$
y=f\left(x \left\lvert\, \frac{b^{2}}{2}\right., p\right)=\frac{b^{2}}{2} p^{p-1} e^{-\frac{b^{2}}{2} x^{p}} I_{(0, \infty)}(x)
$$

If the vel ocity of a particlein thex and y directions are two independent normal random variables with zero means and equal variances, then the distance the particle travels per unit time is distributed Rayleigh.

Mathematical Definition. The Rayleigh pdf is:

$$
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
$$

Example and Plot. The following commands generate a plot of the Rayleigh pdf.

```
x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)
```


Parameter Estimation. The MLE of the Rayleigh parameter is:

$$
b=\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 n}
$$

Student's t Distribution

Background. The t distribution is a family of curves depending on a single parameter v (the degrees of freedom). As v goes to infinity the t distribution converges to the standard normal distribution.
W. S. Gossett (1908) discovered the distribution through his work at Guinness brewery. At that time, Guinness did not allow its staff to publish, so Gossett used the pseudonym Student.

If x and s are the mean and standard deviation of an independent random sample of size n from a normal distribution with mean μ, and $\sigma^{2}=\mathrm{n}$, then:

$$
\begin{aligned}
& \mathrm{t}(\mathrm{v})=\frac{\mathrm{x}-\mu}{\mathrm{s}} \\
& v=\mathrm{n}-1
\end{aligned}
$$

Mathematical Definition. Student's t pdf is:

$$
y=f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
$$

Example and Plot. The plot compares the t distribution with $v=5$ (solid line) to the shorter tailed standard normal distribution (dashed line).

```
x = -5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
plot(x,y,'-',x,z,'-.')
```


Noncentral \dagger Distribution

Background. The noncentral t distribution is a generalization of the familiar Student's t distribution.

If x and s are the mean and standard deviation of an independent random sample of size n from a normal distribution with mean μ, and $\sigma^{2}=\mathrm{n}$, then:

$$
\begin{aligned}
& \mathrm{t}(\mathrm{v})=\frac{\mathrm{x}-\mu}{\mathrm{s}} \\
& v=\mathrm{n}-1
\end{aligned}
$$

Suppose that the mean of the normal distribution is not μ. Then the ratio has the noncentral t distribution. The noncentrality parameter is the difference between the sample mean and μ.

The noncentral t distribution allows us to determine the probability that we would detect a difference between x and μ in a t test. This probability is the power of the test. As $x-\mu$ increases, the power of a test also increases.

Mathematical Definition. The most general representation of the noncentral t distribution is quite complicated. J ohnson and K otz (1970) give a formula for the probability that a noncentral t variate falls in the range $[-\mathrm{t}, \mathrm{t}]$.

$$
\operatorname{Pr}((-\mathrm{t})<\mathrm{x}<\mathrm{t} \mid(v, \delta))=\sum_{\mathrm{j}=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta^{2}\right)^{j}}{\mathrm{j}!} \mathrm{e}^{-\frac{\delta^{2}}{2}}\right) \boldsymbol{|}\left(\left.\frac{\mathrm{x}^{2}}{v+\mathrm{x}^{2}} \right\rvert\, \frac{1}{2}+\mathrm{j}, \frac{v}{2}\right)
$$

where $\mathrm{I}(\mathrm{x} \mid \mathrm{a}, \mathrm{b})$ is the incomplete beta function with parameters a and b .
Example and Plot. The following commands generate a plot of the noncentral t pdf.

```
x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'--',x,p1,'-')
```


Uniform (Continuous) Distribution

Background. The uniform distribution (also called rectangular) has a constant pdf between its two parameters a, the minimum, and b, the maximum. The standard uniform distribution ($\mathrm{a}=0$ and $\mathrm{b}=1$) is a special case of the beta distribution, setting both of its parameters to one.

The uniform distribution is appropriate for representing the distribution of round-off errors in values tabulated to a particular number of decimal places.

Mathematical Definition. The uniform cdf is:

$$
p=F(x \mid a, b)=\frac{x-a}{b-a} I_{[a, b]}(x)
$$

Parameter Estimation. The sample minimum and maximum are the MLEs of a and b respectively.

Example and Plot. The example illustrates the inversion method for generating normal random numbers using rand and norminv. Note that the MATLAB function, randn, does not use inversion since it is not efficient for this case.

$u=\operatorname{rand}(1000,1) ;$
$x=$ norminv(u, 0,1$)$;
hist(x)

Weibull Distribution

Background. Wal oddi Weibull (1939) offered the distribution that bears his name as an appropriate analytical tool for modeling breaking strength of materials. Current usage also includes reliability and lifetime modeling. The Weibull distribution is more flexible than the exponential for these purposes.
To see why, consider the hazard rate function (instantaneous failure rate). If $f(t)$ and $F(t)$ are the pdf and cdf of a distribution, then the hazard rate is:

$$
h(t)=\frac{f(t)}{1-F(t)}
$$

Substituting the pdf and cdf of the exponential distribution for $f(t)$ and $F(t)$ above yields a constant. The example on the next page shows that the hazard rate for the Weibull distribution can vary.

Mathematical Definition. The Weibull pdf is:

$$
y=f(x \mid a, b)=a b x^{b-1} e^{-a x^{b}} I_{(0, \infty)}(x)
$$

Parameter Estimation. Suppose we want to model the tensile strength of a thin filament using the Weibull distribution. The function weibfit give MLEs and confidence intervals for the Weibull parameters.

```
strength = weibrnd(0.5,2,100,1); % Simulated strengths.
[p, ci] = weibfit(strength)
p =
    0.4746 1.9582
ci =
    0.3851 1.6598
    0.5641 2.2565
```

The default 95\% confidence interval for each parameter contains the "true" value.

Example and Plot. The exponential distribution has a constant hazard function, which is not generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull (solid line) distributions having the same mean life. The Weibull hazard rate here increases with age (a reasonable assumption).

```
t = 0:0.1:3;
h1 = exppdf(t,0.6267)./(1 - expcdf(t,0.6267));
h2 = weibpdf(t,2,2)./(1 - weibcdf(t,2,2));
plot(t,h1,'--',t,h2,'-')
```


Descriptive Statistics

Data samples can have thousands (even millions) of values. Descriptive statistics are a way to summarize this data into a few numbers that contain most of the relevant information.

Measures of Central Tendency (Location)

The purpose of measures of central tendency is to locate the data values on the number line. In fact, another term for these statistics is measures of location.

The table gives the function names and descriptions.

Measures of Location	
geomean	Geometric Mean.
harmmean	Harmonic Mean.
mean	Arithmetic average (in MATLAB).
median	50th percentile (in MATLAB).
trimmean	Trimmed Mean.

The average is a simple and popular estimate of location. If the data sample comes from a normal distribution, then the sample average is also optimal (MVUE of μ).
Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The sample average is sensitive to these problems. One bad data value can move the average away from the center of the rest of the data by an arbitrarily large distance.
The median and trimmed mean are two measures that are resistant (robust) to outliers. The median is the 50th percentile of the sample, which will only change slightly if you add a large perturbation to any value. The idea behind the trimmed mean is to ignore a small percentage of the highest and lowest values of a sample for determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers. They are useful when the sample is distributed lognormal or heavily skewed.

The example shows the behavior of the measures of location for a sample with one outlier.

```
x = [ones(1,6) 100]
x =
1
locate = [geomean(x) harmmean(x) mean(x) median(x) ...
trimmean(x,25)]
locate =
\(1.9307 \quad 1.1647 \quad 15.1429 \quad 1.0000 \quad 1.0000\)
```

You can see that the mean is far from any data value because of the influence of the outlier. The median and trimmed mean ignore the outlying value and describe the location of the rest of the data values.

Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data values are on the number line. Another term for these statistics is measures of spread.

The table gives the function names and descriptions.

Measures of Dispersion

iqr	Interquartile Range.
mad	Mean Absolute Deviation.
range	Range.

Measures of Dispersion

std	Standard Deviation (in MATLAB).
var	Variance.

The range (the difference between the maximum and minimum values) is the simplest measure of spread. But if there is an outlier in the data, it will be the minimum or maximum value. Thus, the range is not robust to outliers.
The standard deviation and the variance are popular measures of spread that are optimal for normally distributed samples. The sample variance is the MVUE of the normal parameter σ^{2}. The standard deviation is the square root of the variance and has the desirable property of being in the same units as the data. That is, if the data is in meters the standard deviation is in meters as well. The variance is in meters ${ }^{2}$, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value that is separate from the body of the data can increase the value of the statistics by an arbitrarily large amount.

The Mean Absolute Deviation (MAD) is also sensitive to outliers. But the MAD does not move quite as much as the standard deviation or variance in response to bad data.

The Interquartile Range (IQR) is the difference between the 75th and 25th percentile of the data. Since only the middle 50% of the data affects this measure, it is robust to outliers.

The example below shows the behavior of the measures of dispersion for a sample with one outlier.

```
x = [ones(1,6) 100]
x =
    1
stats = [iqr(x) mad(x) range(x) std(x)]
stats =
    024.2449 99.0000

\section*{Functions for Data with Missing Values (NaNs)}

Most real-world datasets have one or more missing elements. It is convenient to code missing entries in a matrix as NaN (Not a Number.)

Here is a simple example:
```

m = magic(3);
m([1 5 9]) = [NaN NaN NaN]
m =
NaN 1 6
3 NaN 7
4 9 NaN

```

Simply removing any row with a NaN in it would leave us with nothing, but any arithmetic operation involving NaN yields NaN as below.
```

sum(m)
ans =
NaN NaN NaN

```

The NaN functions support the tabled arithmetic operations ignoring NaN.
```

nansum(m)
ans =
7 10 13

```
NaN Functions
\begin{tabular}{l|l}
\hline nanmax & Maximum ignoring NaNs. \\
\hline nanmean & Mean ignoring NaNs. \\
\hline nanmedian & Median ignoring NaNs. \\
\hline nanmin & Minimum ignoring NaNs. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline NaN Functions & \\
\hline nanstd & Standard deviation ignoring NaNs. \\
\hline nansum & Sum ignoring NaNs. \\
\hline
\end{tabular}

\section*{Percentiles and Graphical Descriptions}

Trying to describe a data sample with two numbers, a measure of location and a measure of spread, is frugal but may be misleading.
Another option is to compute a reasonable number of the sample percentiles. This provides information about the shape of the data as well as its location and spread.

The example shows the result of looking at every quartile of a sample containing a mixture of two distributions.
```

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p; y]
z =

0	25.0000	50.0000	75.0000	100.0000
1.5172	4.6842	5.6706	6.1804	7.6035

```

Compare the first two quantiles to the rest.

The box plot is a graph for descriptive statistics. The graph below is a box plot of the data above.


The long lower tail and plus signs show the lack of symmetry in the sample values. For more information on box plots see page 1-103.

The histogram is a complementary graph.


\section*{The Bootstrap}

In the last decade the statistical literature has examined the properties of resampling as a means to acquire information about the uncertainty of statistical estimators.

The bootstrap is a procedure that involves choosing random samples with repl acement from a data set and analyzing each sample the same way. Sampling with replacement means that every sampleis returned to the data set after sampling. So a particular data point from the original data set could
appear multiple times in a given bootstrap sample. The number of elements in each bootstrap sample equals the number of elements in the original data set. The range of sample estimates we obtain allows us to establish the uncertainty of the quantity we are estimating.

Here is an example taken from Efron and Tibshirani (1993) comparing LSAT scores and subsequent law school GPA for a sample of 15 law schools.
```

load lawdata
plot(lsat,gpa,'+')
lsline

```


The least squares fit line indicates that higher LSAT scores go with higher law school GPAs. But how sure are we of this conclusion? The plot gives us some intuition but nothing quantitative.

We can calculate the correlation coefficient of the variables using the corrcoef function.
```

rhohat = corrcoef(lsat,gpa)
rhohat =
1.0000 0.7764
0.7764 1.0000

```

Now we have a number, 0.7764 , describing the positive connection between LSAT and GPA, but though 0.7764 may seem large, we still do not know if it is statistically significant.
Using the bootstrp function we can resample the lsat and gpa vectors as many times as we like and consider the variation in the resulting correlation coefficients.

Here is an example:
```

rhos1000 = bootstrp(1000,'corrcoef',lsat,gpa);

```

This command resamples the lsat and gpa vectors 1000 times and computes the corrcoef function on each sample. Here is a histogram of the result.


Nearly all the estimates lie on the interval [0.4 1.0].
This is strong quantitative evidence that LSAT and subsequent GPA are positively correlated. M oreover, it does not require us to make any strong assumptions about the probability distribution of the correlation coefficient.

\section*{Cluster Analysis}

Cluster analysis, also called segmentation analysis or taxonomy analysis, is a way to partition a set of objects into groups, or clusters, in such a way that the profiles of objects in the same cluster arevery si milar and the profiles of objects in different clusters are quite distinct.

Cluster analysis can be performed on many different types of datasets. For example, a dataset might contain a number of observations of subjects in a study where each observation contains a set of variables.

Many different fields of study, such as engineering, zool ogy, medicine, linguistics, anthropology, psychology, and marketing, have contributed to the devel opment of clustering techniques and the application of such techniques. For example, cluster analysis can be used to find two similar groups for the experiment and control groups in a study. In this way, if statistical differences are found in the groups, they can be attributed to the experiment and not to any initial difference between the groups.

\section*{Terminology and Basic Procedure}

To perform cluster analysis on a dataset using the Statistics Tool box functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the dataset. In this step, you calculate the distance between objects using the pdist function. The pdist function supports many different ways to compute this measurement. See the section "F inding the Similarities Between Objects" for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step, you link together pairs of objects that are in close proximity using the linkage function. The linkage function uses the distance information generated in step 1 to determi ne the proximity of objects to each other. As objects are paired into binary clusters, the newly formed clusters are grouped into larger clusters until a hierarchical tree is formed. See the section "Defining the Links Between Objects" for more information.

3 Determine where to divide the hierarchical tree into clusters. In this step, you divide the objects in the hierarchical tree into clusters using the cluster function. The cluster function can create clusters by detecting
natural groupings in the hierarchical tree or by cutting off the hierarchical tree at an arbitrary point. See the section "Creating Clusters" for more information.

The following sections provide more information about each of these steps.

Note The Statistics Tool box includes a convenience function, clusterdata, which performs all these steps for you. You do not need to execute the pdist, linkage, or cluster functions separately. However, the clusterdata function does not give you access to the options each of the individual routines offers. For example, if you use the pdist function, you can choose the distance calculation method.

\section*{Finding the Similarities Between Objects}

You use the pdist function to calculate the distance between every pair of objects in a dataset. For a dataset made up of \(m\) objects, there are \(m \cdot(m-1) / 2\) pairs in the dataset. The result of this computation is commonly known as a similarity matrix (or dissimilarity matrix).

There are many ways to calculate this distance information. By default, the pdist function calculates the Euclidean distance between objects; however, you can specify one of several other options. See pdist for more information.

\begin{abstract}
Note You can optionally normalize the values in the dataset before calculating the distance information. In a real world dataset, variables can be measured against different scales. For example, one variable can measure IQ test scores and another variable measure head circumference. These discrepancies can distort the proximity calculations. Using the zscore function, you can convert all the values in the dataset to use the same proportional scale. See the zscore function for more information.
\end{abstract}

For example, consider a data set, x , made up of five objects where each object is a set of \(x, y\) coordinates.
\begin{tabular}{l|l|l}
\hline Object & \multicolumn{2}{|c}{ Value } \\
\hline 1 & 1 & 2 \\
\hline 2 & 2.5 & 4.5 \\
\hline 3 & 2 & 2 \\
\hline 4 & 4 & 1.5 \\
\hline 5 & 4 & 2.5 \\
\hline
\end{tabular}

You can definethis dataset as a matrix, \(\mathrm{X}=[12 ; 2.54 .5 ; 2\) 2;4 1.5;4 2.5], and pass it to pdist. The pdist function calculates the distance between object 1 and object 2 , object 1 and object 3 , and so on until the distances between all the pairs have been calculated. The following figure plots these objects in a graph. The distance between object 2 and object 3 is shown to illustrate one interpretation of distance.


\section*{Returning Distance Information}

The pdist function returns this distance information in a vector, Y , whereeach element contains the distance between a pair of objects.
```

Y = pdist(X)
Y =
Columns 1 through 7
2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000
Columns 8 through 10
2.0616 2.0616 1.0000

```

To make it easier to see the relationship between the distance information generated by pdist and the objects in the original dataset, you can reformat the distance vector into a matrix using the squareform function. In this matrix, element \(\mathrm{i}, \mathrm{j}\) corresponds to the distance between object i and object \(j\) in the original dataset. In the following example, el ement 1,1 represents the distance between object 1 and itself (which is zero). Element 1,2 represents the di stance between object 1 and object 2 , and so on.
\(\left.\begin{array}{rrrrr}\begin{array}{l}\text { squareform }(Y) \\ \text { ans }=\end{array} & 0 & 2.9155 & 1.0000 & 3.0414\end{array}\right) 3.0414\)

\section*{Defining the Links Between Objects}

Once the proximity between objects in the dataset has been computed, you can determine which objects in the data set should be grouped together into clusters, using the linkage function. The linkage function takes the distance information generated by pdist and links pairs of objects that are close together into binary clusters (clusters made up of two objects). The linkage function then links these newly formed clusters to other objects to create bigger clusters until all the objects in the original data set are linked together in a hierarchical tree.

F or example, given the distance vector, Y , generated by pdist from the sample dataset of \(x\) and \(y\) coordinates, the linkage function generates a hierarchical cluster tree, returning the linkage information in a matrix, \(z\).
\begin{tabular}{rlr}
\(\mathrm{Z}=\) & linkage \((\mathrm{Y})\) & \\
\(\mathrm{Z}=\) & & \\
& 1.0000 & 3.0000 \\
& 4.0000 & 5.0000 \\
& 1.0000 \\
& 6.0000 & 7.0000 \\
& 8.0000 & 2.0000 \\
& & 2.0616 \\
&
\end{tabular}

In this output, each row identifies a link. The first two columns identify the objects that have been linked, that is, object 1, object 2, and so on. The third column contains the distance between these objects. For the sample dataset of \(x\) and \(y\) coordinates, the linkage function begins by grouping together objects 1 and 3 , which have the closest proximity (distance value \(=1.0000\) ). The linkage function continues by grouping objects 4 and 5, which also have a distance value of 1.0000 .

The third row indicates that the linkage function grouped together objects 6 and 7 . If our original sample dataset contained only 5 objects, what are objects 6 and 7 ? Object 6 is the newly formed binary cluster created by the grouping of objects 1 and 3 . When the linkage function groups two objects together into a new cluster, it must assign the cluster a unique index value, starting with the value \(m+1\), where \(m\) is the number of objects in the original dataset. (Values 1 through \(m\) are already used by the original dataset.) Object 7 is the index for the cluster formed by objects 4 and 5 .

As the final cluster, the linkage function grouped object 8, the newly formed cluster made up of objects 6 and 7 , with object 2 from the original dataset. The
following figure graphically illustrates the way linkage groups theobjects into a hierarchy of clusters.


The hierarchical, binary cluster tree created by the linkage function is most easily understood when viewed graphically. The Statistics Tool box includes the dendrogram function that plots this hierarchical tree information as a graph, as in the following example.
dendrogram(Z)


In the figure, the numbers al ong the horizontal axis represent theindices of the objects in the original dataset. The links between objects are represented as upside down U -shaped lines. The height of the U indicates the distance between the objects. For example, the link representing the cluster containing objects 1 and 3 has a height of 1 . For more information about creating a dendrogram diagram, see the dendrogram function reference page.

\section*{Evaluating Cluster Formation}

After linking the objects in a dataset into a hierarchical cluster tree, you may want to verify that the tree represents significant similarity groupings. In addition, you may want more information about the links between the objects. The Statistics Tool box provides functions to perform both these tasks.

\section*{Verifying the Cluster Tree}

One way to measure the validity of the cluster information generated by the linkage function is to compareit with the original proximity data generated by the pdist function. If the clustering is valid, the linking of objects in the cluster tree should have a strong correlation with the distances between objects in the distance vector. The cophenet function compares these two sets of values and computes their correlation, returning a value called the cophenetic corrdation coefficient. The closer the value of the cophenetic correlation coefficient is to 1 , the better the clustering solution.
You can use the cophenetic correlation coefficient to compare the results of clustering the same dataset using different distance calculation methods or clustering algorithms.

For example, you can use the cophenet function to evaluate the clusters created for the sample dataset
```

c = cophenet(Z,Y)
c =
0.8573

```
where \(Z\) is the matrix output by the linkage function and \(Y\) is the distance vector output by the pdist function.

Execute pdist again on the same dataset, this time specifying the City Block metric. After running the linkage function on this new pdist output, use the cophenet function to evaluate the clustering using a different distance metric.
```

c = cophenet(Z,Y)
c =
0.9289

```

The cophenetic correlation coefficient shows a stronger correlation when the City Block metric is used.

\section*{Getting More Information about Cluster Links}

One way to determine the natural cluster divisions in a dataset is to compare the length of each link in a cluster tree with the lengths of neighboring links below it in the tree.

If a link is approximately the same length as neighboring links, it indicates that there are similarities between the objects joined at this level of the hierarchy. These links are said to exhibit a high level of consistency.

If the length of a link differs from neighboring links, it indicates that there are dissimilarities between the objects at this level in the cluster tree. This link is said to be inconsistent with the links around it. In cluster analysis, inconsistent links can indicate the border of a natural division in a dataset. The cluster function uses a measure of inconsistency to determine where to divide a dataset into clusters. (See "Creating Clusters" for more information.)

To illustrate, the following example creates a dataset of random numbers with three deliberate natural groupings. In the dendrogram, note how the objects tend to collect into three groups. These three groups are then connected by three longer links. These longer links are inconsistent when compared with the links bel ow them in the hierarchy.
```

rand('seed',3)
X = [rand(10,2)+1;rand(10,2)+2;rand(10,2)+3];
Y = pdist(X);
Z = linkage(Y);
dendrogram(Z);

```

These links show inconsistency, when compared to links below them.


The relative consistency of each link in a hierarchical cluster tree can be quantified and expressed as the inconsistency coefficient. This value compares the length of a link in a cluster hierarchy with the average length of neighboring links. If the object is consistent with those around it, it will have a Iow inconsistency coefficient. If the object is inconsistent with those around it, it will have a higher inconsistency coefficient.
To generate a listing of the inconsistency coefficient for each link the cluster tree, use the inconsistent function. The inconsistent function compares
each link in the cluster hierarchy with adjacent links two levels below it in the cluster hierarchy. This is called the depth of the comparison. Using the inconsistent function, you can specify other depths. The objects at the bottom of the cluster tree, called leaf nodes, that have no further objects bel ow them, have an inconsistency coefficient of zero.

For example, returning to the sample dataset of \(x\) and \(y\) coordinates, let's use the inconsistent function to calculate the inconsistency values for the links created by the linkage function, described in "Defining the Links Between Objects" on page 1-53.
```

I = inconsistent(Z)
I =

1.0000	0	1.0000	0
1.0000	0	1.0000	0
1.3539	0.8668	3.0000	0.8165
2.2808	0.3100	2.0000	0.7071

```

The inconsistent function returns data about the links in an m-1 by 4 matrix where each column provides data about the links.
\begin{tabular}{l|l} 
Column & Description \\
\hline 1 & Mean of the lengths of all the links included in the calculation. \\
\hline 2 & Standard deviation of all the links included in the calculation. \\
\hline 3 & Number of links included in the calculation. \\
\hline 4 & Inconsistency coefficient. \\
\hline
\end{tabular}

In the sample output, the first row represents the link between objects 1 and 3. (This cluster is assigned the index 6 by the linkage function.) Because this a leaf node, the inconsistency coefficient is zero. The second row represents the link between objects 4 and 5, also a leaf node. (This cluster is assigned the index 7 by the linkage function.)
The third row evaluates the link that connects these two leaf nodes, objects 6 and 7. (This cluster is called object 8 in the linkage output). Column three indicates that three links are considered in the calculation: the link itself and the two links directly below it in the hierarchy. Column one represents the mean of the lengths of these links. The inconsistent function uses the length
information output by the linkage function to calculate the mean. Column two represents the standard deviation between the links. Thelast column contains the inconsistency value for these links, 0.8165 .

The following figure illustrates the links and lengths included in this calculation.


Row four in the output matrix describes the link between object 8 and object 2 . Column three indicates that two links are included in this calculation: thelink itself and the link directly below it in the hierarchy. The inconsistency coefficient for this link is 0.7071 .

The following figure illustrates the links and lengths included in this calculation.


\section*{Creating Clusters}

After you create the hierarchical tree of binary clusters, you can divide the hierarchy into larger clusters using the cluster function. The cluster function lets you create clusters in two ways:
- By finding the natural divisions in the original data set
- By specifying an arbitrary number of clusters

\section*{Finding the Natural Divisions in the Dataset}

In the hierarchical cluster tree, the dataset may naturally align itself into clusters. This can be particularly evident in a dendrogram diagram where groups of objects are densely packed in certain areas and not in others. The inconsistency coefficient of thelinks in the cluster treecan identify these points where the similarities between objects change. (See "Evaluating Cluster Formation" for more information about the inconsistency coefficient.) Y ou can use this value to determine where the cluster function draws cluster boundaries.

For example, if you use the cluster function to group the sample dataset into clusters, specifying an inconsistency coefficient threshold of 0.9 as the value of the cutoff argument, the cluster function groups all the objects in the sample dataset into one cluster. In this case, none of the links in the cluster hierarchy had an inconsistency coefficient greater than 0.9.
```

T = cluster(Z,0.9)
T =
1
1
1
1
1

```

The cluster function outputs a vector, T , that is the same size as the original dataset. Each element in this vector contains the number of the cluster into which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8 , the cluster function divides the sample dataset into three separate clusters.
```

T = cluster(Z,0.8)
T =
1
3
1
2
2

```

This output indicates that objects 1 and 3 were placed in cluster 1, objects 4 and 5 were placed in cluster 2, and object 2 was placed in cluster 3.

\section*{Specifying Arbitrary Clusters}

Instead of letting the cluster function create clusters determined by the natural divisions in the data set, you can specify the number of clusters you want created. In this case, the value of the cutoff argument specifies the point in the cluster hierarchy at which to create the clusters.

F or example, you can specify that you want the cluster function to divide the sample dataset into two clusters. In this case, the cluster function creates one cluster containing objects 1, 3, 4, and 5 and another cluster containing object 2.
```

T = cluster(Z,2)
T =
1
2
1
1
1

```

To help you visualize how the cluster function determines how to create these clusters, the following figure shows the dendrogram of the hierarchical cluster tree. When you specify a value of 2 , the cluster function draws an imaginary horizontal line across the dendrogram that bisects two vertical lines. All the objects below the line bel ong to one of these two clusters.


If you specify a cutoff value of 3 , the cluster function cuts off the hierarchy at a lower point, bisecting three lines.
\[
\begin{aligned}
& \mathrm{T}=\text { cluster }(Z, 3) \\
& \mathrm{T}= \\
& 1 \\
& 3 \\
& 1 \\
& 2 \\
& 2
\end{aligned}
\]

This time, objects 1 and 3 are grouped in a cluster, objects 4 and 5 are grouped in a cluster and object 2 is placed into a cluster, as seen in the following figure.


\section*{Linear Models}

Linear models are problems that take the form
\[
y=X \beta+\varepsilon
\]
where:
- y is an n by 1 vector of observations.
- \(X\) is the \(n\) by \(p\) design matrix for the model.
- \(\beta\) is a \(p\) by 1 vector of parameters.
- \(\varepsilon\) is an \(n\) by 1 vector of random disturbances.

One-way analysis of variance (ANOVA), two-way ANOVA, polynomial regression, and multiplelinear regression are specific cases of thelinear model.

\section*{One-Way Analysis of Variance (ANOVA)}

The purpose of a one-way ANOVA is to find out whether data from several groups have a common mean. That is, to determine whether the groups are actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way ANOVA form of the model is
\[
y_{i j}=\alpha_{. j}+\varepsilon_{i j}
\]
where:
- \(\mathrm{y}_{\mathrm{ij}}\) is a matrix of observations.
- \(\alpha_{\text {. }}\) is a matrix whose columns are the group means. (The "dot j" notation means that \(\alpha\) applies to all rows of the jth column.)
- \(\varepsilon_{\mathrm{ij}}\) is a matrix of random disturbances.

The model posits that the columns of \(y\) are a constant plus a random disturbance. You want to know if the constants are all the same.

The data below comes from a study by Hogg and Ledolter (1987) of bacteria counts in shipments of milk. The columns of the matrix hogg represent different shipments. The rows are bacteria counts from cartons of milk chosen
randomly from each shipment. Do some shipments have higher counts than others?
```

load hogg
p = anova1(hogg)
p =
1.1971e-04
hogg
hogg =

24	14	11	7	19
15	7	9	7	24
21	12	7	4	19
27	17	13	7	15
33	14	12	12	10
23	16	18	18	20

```

The standard ANOVA table has columns for the sums of squares, degrees of freedom, mean squares (SS/df), and F statistic.

\section*{ANOVA Table}
\begin{tabular}{lcccc} 
Source & SS & df & MS & F \\
Columns & 803 & 4 & 200.7 & 9.008 \\
Error & 557.2 & 25 & 22.29 & \\
Total & 1360 & 29 & &
\end{tabular}

You can use the F statistic to do a hypothesis test to find out if the bacteria counts are the same. anova1 returns the p-value from this hypothesis test.
In this case the \(p\)-value is about 0.0001 , a very small value. This is a strong indication that the bacteria counts from the different tankers are not the same. An F statistic as extreme as the observed F would occur by chance only once in 10,000 times if the counts were truly equal.

The p-value returned by anova1 depends on assumptions about the random disturbances in the model equation. For the p-value to be correct, these
disturbances need to be independent, normally distributed and have constant variance.

Y ou can get some graphic assurance that the means are different by looking at the box plots in the second figure window displayed by anova1.


Since the notches in the box plots do not all overlap, this is strong confirming evidence that the column means are not equal.

\section*{Two-Way Analysis of Variance (ANOVA)}

The purpose of two-way ANOVA is to find out whether data from several groups have a common mean. One-way ANOVA and two-way ANOVA differ in that the groups in two-way ANOVA have two categories of defining characteristics instead of one.

Suppose an automobilecompany has two factories that both makethree models of car. It is reasonable to ask if the gas mileage in the cars varies from factory to factory as well as model to model.

There could be an overall difference in mileage due to a difference in the production methods between factories. There is probably a difference in the mileage of the different models (irrespective of the factory) due to differences in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps because of a superior production line), but not be different from the other factory for other models. This effect is called an interaction. It is impossible to detect an interaction unless there are duplicate observations for some combination of factory and car model.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA form of the model is
\[
y_{i j k}=\mu+\alpha_{. j}+\beta_{i .}+\gamma_{i j}+\varepsilon_{i j k}
\]
where:
- \(y_{i j k}\) is a matrix of observations.
- \(\mu\) is a constant matrix of the overall mean.
- \(\alpha_{\mathrm{j}}\) is a matrix whose columns are the group means (the rows of \(\alpha\) sum to 0 ).
- \(\beta_{\mathrm{i}}\) is a matrix whose rows are the group means (the col umns of \(\beta\) sum to 0 ).
- \(\gamma_{i j}\) is a matrix of interactions (the rows and columns of \(\gamma\) sum to zero).
- \(\varepsilon_{i j k}\) is a matrix of random disturbances.

The purpose of the example is to determine the effect of car model and factory on the mileage rating of cars.
```

load mileage
mileage
mileage =

33.3000	34.5000	37.4000
33.4000	34.8000	36.8000
32.9000	33.8000	37.6000
32.6000	33.4000	36.6000
32.5000	33.7000	37.0000
33.0000	33.9000	36.7000

cars = 3;
p = anova2(mileage,cars)
p =
0.0000 0.0039 0.8411

```

There are three models of cars (col umns) and two factories (rows). The reason there are six rows instead of two is that each factory provides three cars of each model for the study. The data from the first factory is in the first three rows, and the data from the second factory is in the last three rows.

The standard ANOVA table has columns for the sums of squares, degrees of freedom, mean squares (SS/df), and F statistics.

ANOVA Table
\begin{tabular}{lcccc} 
Source & SS & df & MS & F \\
Columns & 53.35 & 2 & 26.68 & 234.2 \\
Rows & 1.445 & 1 & 1.445 & 12.69 \\
Interaction & 0.04 & 2 & 0.02 & 0.1756 \\
Error & 1.367 & 12 & 0.1139 & \\
Total & 56.2 & 17 & \multicolumn{3}{l}{} \\
& & & &
\end{tabular}

Y ou can use the \(F\) statistics to do hypotheses tests to find out if the mileage is the same across models, factories, and model-factory pairs (after adjusting for the additive effects). anova2 returns the p-value from these tests.
The \(p\)-value for the model effect is zero to four decimal places. This is a strong indication that the mileage varies from one model to another. An F statistic as extreme as the observed \(F\) would occur by chanceless than once in 10,000 times if the gas mileage were truly equal from model to model.

The p-value for the factory effect is 0.0039 , which is also highly significant. This indicates that one factory is out-performing the other in the gas mileage of the cars it produces. The observed p-value indicates that an F statistic as extreme as the observed F would occur by chance about four out of 1000 times if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models. The p-value, 0.8411 , means that the observed result is quite likely (84 out 100 times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random disturbances in the model equation. For the p-values to be correct these disturbances need to be independent, normally distributed and have constant variance.

\section*{Multiple Linear Regression}

The purpose of multiple linear regression is to establish a quantitative relationship between a group of predictor variables (the columns of \(X\) ) and a response, \(y\). This relationship is useful for:
- Understanding which predictors have the most effect.
- Knowing the direction of the effect (i.e., increasing \(x\) increases/decreases y).
- Using the model to predict future values of the response when only the predictors are currently known.

The linear model takes its common form
\[
y=X \beta+\varepsilon
\]
where:
- y is an n by 1 vector of observations.
- \(X\) is an \(n\) by \(p\) matrix of regressors.
- \(\beta\) is a \(p\) by 1 vector of parameters.
- \(\varepsilon\) is an \(n\) by 1 vector of random disturbances.

The solution to the problem is a vector, \(b\), which estimates the unknown vector of parameters, \(\beta\). The least-squares solution is:
\[
b=\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\]

This equation is useful for developing later statistical formulas, but has poor numeric properties. regress uses \(Q R\) decomposition of \(X\) followed by the backslash operator to compute b. The QR decomposition is not necessary for computing b, but the matrix, R, is useful for computing confidence intervals.

You can plugb back into the model formula to get the predicted \(y\) values at the data points.
\[
\begin{aligned}
& \hat{y}=X b=H y \\
& H=X\left(X^{\prime} X\right)^{-1} X^{\prime}
\end{aligned}
\]

Statisticians use a hat (circumflex) over a letter to denote an estimate of a parameter or a prediction from a model. The projection matrix H , is called the hat matrix, because it puts the "hat" on \(y\).

The residuals are the difference between the observed and predicted y values.
\[
r=y-\hat{y}=(1-H) y
\]

The residuals are useful for detecting failures in the model assumptions, since they correspond to the errors, \(\varepsilon\), in the model equation. By assumption, these errors each have independent normal distributions with mean zero and a constant variance.

The residuals, however, are correlated and have variances that depend on the locations of the data points. It is a common practice to scale ("Studentize") the residuals so they all have the same variance.

In the equation below, the scal ed residual, \(\mathrm{t}_{\mathrm{i}}\), has a Student'st distribution with \((n-p)\) degrees of freedom.
\[
\mathrm{t}_{\mathrm{i}}=\frac{\mathrm{r}_{\mathrm{i}}}{\hat{\sigma}_{(\mathrm{i})} \sqrt{1-h_{i}}}
\]
where:
\[
\hat{\sigma}_{(i)}^{2}=\frac{\|r\|^{2}}{n-p-1}-\frac{r_{i}^{2}}{(n-p-1)\left(1-h_{i}\right)}
\]
- \(t_{i}\) is the scaled residual for the ith data point.
- \(r_{i}\) is the raw residual for the ith data point.
- n is the sample size.
- \(p\) is the number of parameters in the model.
- \(h_{i}\) is the ith diagonal element of \(H\).

The left-hand side of the second equation is the estimate of the variance of the errors excluding the ith data point from the calculation.

A hypothesis test for outliers involves comparing \(t_{i}\) with the critical values of the \(t\) distribution. If \(\mathrm{t}_{\mathrm{i}}\) is large, this casts doubt on the assumption that this residual has the same variance as the others.

A confidence interval for the mean of each error is:
\[
c_{i}=r_{i} \pm t_{\left(1-\frac{\alpha}{2}, v\right)} \hat{\sigma}_{(i)} \sqrt{1-h_{i}}
\]

Confidence intervals that do not include zero are equivalent to rejecting the hypothesis (at a significance probability of \(\alpha\) ) that the residual mean is zero. Such confidence intervals are good evidence that the observation is an outlier for the given model.

\section*{Example}

The example comes from Chatterjee and Hadi (1986) in a paper on regression diagnostics. The dataset (originally from Moore (1975)) has five predictor variables and one response.
```

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];

```

The matrix, \(x\), has a column of ones, then one column of values for each of the five predictor variables. The column of ones is necessary for estimating the \(y\)-intercept of the linear model.
```

y = moore(:,6);
[b,bint,r,rint,stats] = regress(y,X);

```

The y-intercept is \(b(1)\), which corresponds to the column index of the column of ones.
```

stats
stats =
0.8107 11.9886 0.0001

```

The el ements of the vector stats are the regression \(R^{2}\) statistic, the \(F\) statistic (for the hypothesis test that all the regression coefficients are zero), and the p -value associated with this F statistic.
\(\mathrm{R}^{2}\) is 0.8107 indi cating the model accounts for over \(80 \%\) of the variability in the observations. TheF statistic of about 12 and its \(p\)-value of 0.0001 indicate that it is highly unlikely that all of the regression coefficients are zero.


The plot shows the residuals plotted in case order (by row). The 95\% confidence intervals about these residuals are plotted as error bars. The first observation is an outlier since its error bar does not cross the zero reference line.

\section*{Quadratic Response Surface Models}

Response Surface Methodology (RSM) is a tool for understanding the quantitative relationship between multiple input variables and one output variable.

Consider oneoutput, \(z\), as a polynomial function of two inputs, \(x\) and \(y . . z=f(x, y)\) describes a two dimensional surfacein the space ( \(x, y, z\) ). Of course, you can have as many input variables as you want and the resulting surface becomes a hyper-surface.
For three inputs ( \(x_{1}, x_{2}, x_{3}\) ) the equation of a quadratic response surface is:
\[
\begin{array}{ll}
\mathrm{y}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}_{1}+\mathrm{b}_{2} \mathrm{x}_{2}+\mathrm{b}_{3} \mathrm{x}_{3}+\ldots & \text { (linear terms) } \\
\mathrm{b}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{b}_{13} \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{b}_{23} \mathrm{x}_{2} \mathrm{x}_{3}+\ldots & \text { (interaction terms) } \\
\mathrm{b}_{11} \mathrm{x}_{1}^{2}+\mathrm{b}_{22} \mathrm{x}_{2}^{2}+\mathrm{b}_{33} \mathrm{x}_{3}^{2} & \text { (quadratic terms) }
\end{array}
\]

It is difficult to visualize a \(k\)-dimensional surface in \(k+1\) dimensional space when \(k>2\). The function rstool is a GUI designed to make this visualization more intuitive.

\section*{Exploring Graphs of Multidimensional Polynomials}

The function rstool is useful for fitting response surface models. The purpose of rstool is larger than just fitting and prediction for polynomial models. This GUI provides an environment for exploration of the graph of a multidimensional polynomial.

You can learn about rstool by trying the commands below. The chemistry behind the data in reaction.mat deals with reaction kinetics as a function of the partial pressure of three chemical reactants: hydrogen, \(n\)-pentane, and isopentane.
```

load reaction
rstool(reactants,rate,'quadratic',0.01,xn,yn)

```

You will see a "vector" of three plots. The dependent variable of all three plots is the reaction rate. The first plot has hydrogen as the independent variable. The second and third plots have n-pentane and isopentane respectively.

Each plot shows the fitted relationship of the reaction rate to the independent variable at a fixed value of the other two independent variables. The fixed value of each independent variable is in an editable text box below each axis. You can change the fixed value of any independent variable by either typing a new value in the box or by dragging any of the 3 vertical lines to a new position.

When you change the value of an independent variable, all the plots update to show the current picture at the new point in the space of the independent variables.

Note that while this example only uses three reactants, rstool can accommodate an arbitrary number of independent variables. Interpretability may be limited by the size of the monitor for large numbers of inputs.

The GUI also has two pop-up menus. The Export menu facilitates saving various important variables in the GUI to the base workspace. Below the Export menu there is another menu that allows you to change the order of the polynomial model from within the GUI. If you used the commands above, this menu will have the string Full Quadratic. Other choices are:
- Linear - has the constant and first order terms only.
- Pure Quadratic - includes constant, linear and squared terms.
- Interactions - includes constant, linear, and cross product terms.

\section*{Stepwise Regression}

Stepwise regression is a technique for choosing the variables to include in a multiple regression model. F orward stepwise regression starts with no model terms. At each step it adds the most statistically significant term (the one with the highest \(F\) statistic or lowest p-value) until there are none left. Backward stepwise regression starts with all the terms in the model and removes the least significant terms until all the remaining terms are statistically significant. It is also possible to start with a subset of all the terms and then add signifi cant terms or remove insignificant terms.

An important assumption behind the method is that some input variables in a multiple regression do not have an important explanatory effect on the response. If this assumption is true, then it is a convenient simplification to keep only the statistically significant terms in the model.

One common problem in multiple regression analysis is multicollinearity of the input variables. The input variables may be as correlated with each other as they are with the response. If this is the case, the presence of one input variable in the model may mask the effect of another input. Stepwise regression used as a canned procedure is a dangerous tool because the resulting model may include different variables depending on the choice of starting model and inclusion strategy.

The Statistics Toolbox uses an interactive graphical user interface (GUI) to provide a more understandable comparison of competing models. Y ou can explore the GUI using the Hald (1960) data set. Here are the commands to get started.
```

load hald
stepwise(ingredients,heat)

```

The Hald data come from a study of the heat of reaction of various cement mixtures. There are 4 components in each mixture, and the amount of heat produced depends on the amount of each ingredient in the mixture.

\section*{Stepwise Regression Interactive GUI}

The interface consists of three interactively linked figure windows:
- The Stepwise Regression Plot
- The Stepwise Regression Diagnostics Table
- The Stepwise History Plot

All three windows have hot regions. When your mouse is above one of these regions, the pointer changes from an arrow to a circle. Clicking on this point initiates some activity in the interface.

\section*{Stepwise Regression Plot}

This plot shows the regression coefficient and confidence interval for every term (in or out of the model). The green lines represent terms in the model while red lines indicate that the term is not currently in the model.
Statistically significant terms are solid lines. Dotted lines show that the fitted coefficient is not significantly different from zero.

Clicking on a line in this plot toggles its state. That is, a term in the model (green line) gets removed (turns red), and terms out of the model (red line) enter the model (turn green).

The coefficient for a term out of the model is the coefficient resulting from adding that term to the current model.

Scale Inputs. Pressing this button centers and normalizes the columns of the input matrix to have a standard deviation of one.

Export. This pop-up menu allows you to export variables from the stepwise function to the base workspace.

Close. The Close button removes all the figure windows.

\section*{Stepwise Regression Diagnostics Figure}

This table is a quantitative view of the information in the Stepwise Regression Plot. The table shows the H ald model with the second and third terms removed.


Coefficients and Confidence Intervals. The table at the top of the figure shows the regression coefficient and confidence interval for every term (in or out of the model.) The green rows in the table (on your monitor) represent terms in the model while red rows indicate terms not currently in the model.

Clicking on a row in this table toggles the state of the corresponding term. That is, a term in the model (green row) gets removed (turns red), and terms out of the model (red rows) enter the model (turn green).
The coefficient for a term out of the model is the coefficient resulting from adding that term to the current model.

Additional Diagnostic Statistics. There are also several diagnostic statistics at the bottom of the table:
- RMSE - the root mean squared error of the current model.
- R-square - the amount of response variability explained by the model.
- F - the overall F statistic for the regression.
- P - the associated significance probability.

Close Button. Shuts down all windows.
Help Button. Activates online help.

Stepwise History. This plot shows the RMSE and a confidence interval for every model generated in the course of the interactive use of the other windows.

Recreating a Previous Model. Clicking on one of these lines re-creates the current model at that point in the analysis using a new set of windows. You can thus compare the two candidate models directly.

\section*{Nonlinear Regression Models}

Response Surface M ethodology (RSM) is an empirical modeling approach using polynomials as local approximations to the trueinput/output relationship. This empirical approach is often adequate for process improvement in an industrial setting.

In scientific applications there is usually relevant theory that allows us to make a mechanistic model. Often such models are nonlinear in the unknown parameters. Nonlinear models are more difficult to fit, requiring iterative methods that start with an initial guess of the unknown parameters. Each iteration alters the current guess until the al gorithm converges.

\section*{Mathematical Form}

The Statistics Toolbox has functions for fitting nonlinear models of the form
\[
y=f(X, \beta)+\varepsilon
\]
where:
- y is an n by 1 vector of observations.
- \(f\) is any function of \(X\) and \(\beta\).
- \(X\) is an \(n\) by \(p\) matrix of input variables.
- \(\beta\) is a p by 1 vector of unknown parameters to be estimated.
- \(\varepsilon\) is an \(n\) by 1 vector of random disturbances.

\section*{Nonlinear Modeling Example}

The Hougen-Watson model (Bates and Watts 1988) for reaction kinetics is one specific example of this type. The form of the model is:
\[
\text { rate }=\frac{\beta_{1} \cdot x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} \cdot x_{1}+\beta_{3} \cdot x_{2}+\beta_{4} \cdot x_{3}}
\]
where \(\beta_{1}, \beta_{2}, \ldots, \beta_{5}\) are the unknown parameters, and \(x_{1}, x_{2}\), and \(x_{3}\) are the three input variables. The three inputs are hydrogen, \(n\)-pentane, and isopentane. It is easy to see that the parameters do not enter the model linearly.

The file reaction.mat contains simulated data from this reaction.
```

load reaction
who
Your variables are:

beta	rate	$x n$
model	reactants	$y n$

```
where:
- rate is a vector of observed reaction rates 13 by 1 .
- reactants is a three column matrix of reactants 13 by 3.
- beta is vector of initial parameter estimates 5 by 1.
- 'model' is a string containing the nonlinear function name.
- ' \(x n\) ' is a string matrix of the names of the reactants.
- 'yn' is a string containing the name of the response.

\section*{Fitting the Hougen-Watson Model}

The Statistics Tool box provides the function nlinfit for finding parameter estimates in nonlinear modeling. nlinfit returns the least-squares parameter estimates. That is, it finds the parameters that minimize the sum of the squared differences between the observed responses and their fitted values. It uses the Gauss-N ewton algorithm with Levenberg-Marquardt modifications for global convergence.
nlinfit requires the input data, the responses, and an initial guess of the unknown parameters. You must also supply a function that takes the input data and the current parameter estimate and returns the predicted responses. In MATLAB this is called a "function" function.
```

Here is the hougen function:
function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have 5 elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)
%
% Reference:
% [1] Bates, Douglas, and Watts, Donald, "Nonlinear
% Regression Analysis and Its Applications", Wiley
% 1988 p. 271-272.
% Copyright (c) 1993-97 by The MathWorks, Inc.
% B.A. Jones 1-06-95.
b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);
x1 = x(:,1);
x2 = x(:,2);
x3 = x(:,3);
yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

```

To fit the reaction data, call the function nlinfit:
```

load reaction
betahat = nlinfit(reactants,rate,'hougen',beta)
betahat =

```
    1.2526
    0.0628
    0.0400
    0.1124
    1.1914
nlinfit has two optional outputs. They are the residuals and J acobian matrix at the solution. The residuals are the differences between the observed and fitted responses. The J acobian matrix is the direct analog of the matrix, \(X\), in the standard linear regression model.

These outputs are useful for obtaining confidence intervals on the parameter estimates and predicted responses.

\section*{Confidence Intervals on the Parameter Estimates}

Using nlparci, form 95\% confidence intervals on the parameter estimates, betahat, from the reaction kinetics example.
```

[betahat,f,J] = nlinfit(reactants,rate,'hougen',beta);
betaci = nlparci(betahat,f,J)
betaci =

-0.7467	3.2519
-0.0377	0.1632
-0.0312	0.1113
-0.0609	0.2857
-0.7381	3.1208

```

\section*{Confidence Intervals on the Predicted Responses}

Using nlpredci, form 95\% confidence intervals on the predicted responses from the reaction kinetics example.
```

[yhat, delta] = nlpredci('hougen',reactants,betahat,f,J);
opd = [rate yhat delta]
opd =

8.5500	8.2937	0.9178
3.7900	3.8584	0.7244
4.8200	4.7950	0.8267
0.0200	-0.0725	0.4775
2.7500	2.5687	0.4987
14.3900	14.2227	0.9666
2.5400	2.4393	0.9247
4.3500	3.9360	0.7327
13.0000	12.9440	0.7210
8.5000	8.2670	0.9459
0.0500	-0.1437	0.9537
11.3200	11.3484	0.9228
3.1300	3.3145	0.8418

```

The matrix, opd, has the observed rates in column 1 and the predictions in column 2 . The \(95 \%\) confidence interval is column \(2 \pm\) column 3 . Note that the confidence interval contains the observations in each case.

\section*{An Interactive GUI for Nonlinear Fitting and Prediction}

The function nlintool for nonlinear models is a direct analog of rstool for polynomial models. nlintool requires the same inputs as nlinfit. nlintool calls nlinfit.

The purpose of nlintool is larger than just fitting and prediction for nonlinear models. This GUI provides an environment for exploration of the graph of a multidimensional nonlinear function.

If you have already loaded reaction. mat, you can start nlintool:
```

nlintool(reactants,rate,'hougen',beta,0.01,xn,yn)

```

Y ou will see a "vector" of three plots. The dependent variable of all three plots is the reaction rate. The first plot has hydrogen as the independent variable. The second and third plots have n-pentane and isopentane respectively.
Each plot shows the fitted relationship of the reaction rate to the independent variable at a fixed value of the other two independent variables. The fixed value of each independent variable is in an editable text box below each axis. Y ou can change the fixed value of any independent variable by either typing a new value in the box or by dragging any of the 3 vertical lines to a new position.

When you change the value of an independent variable, all the plots update to show the current picture at the new point in the space of the independent variables.

Note that while this example only uses three reactants, nlintool, can accommodate an arbitrary number of independent variables. Interpretability may be limited by the size of the monitor for large numbers of inputs.

\section*{Hypothesis Tests}

A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable.

F or example, suppose that someone says that the average price of a gallon of regular unleaded gas in Massachusetts is \(\$ 1.15\). How would you decide whether this statement is true? Y ou could try to find out what every gas station in the statewas charging and how many gallons they were selling at that price. That approach might be definitive, but it could end up costing more than the information is worth.

A simpler approach is to find out the price of gas at a small number of randomly chosen stations around the state and compare the average price to \(\$ 1.15\).

Of course, the average price you get will probably not be exactly \(\$ 1.15\) due to variability in price from one station to the next. Suppose your average price was \(\$ 1.18\). Is this three cent difference a result of chance variability, or is the original assertion incorrect? A hypothesis test can provide an answer.

\section*{Terminology}

To get started, there are some terms to define and assumptions to make.
- The null hypothesis is the original assertion. In this case the null hypothesis is that the average price of a gallon of gas is \(\$ 1.15\). The notation is \(\mathrm{H}_{0}: \mu=\) 1.15.
- Therearethree possibilities for the alternativehypothesis. You might only be interested in the result if gas prices were actually higher. In this case, the alternative hypothesis is \(\mathrm{H}_{1}: \mu>1.15\). The other possibilities are \(\mathrm{H}_{1}: \mu<1.15\) and \(\mathrm{H}_{1}: \mu \neq 1.15\).
- The significancelevel is related tothe degree of certainty you requirein order to reject the null hypothesis in favor of the alternative. By taking a small sample you cannot be certain about your conclusion. So you decide in advance to reject the null hypothesis if the probability of observing your sampled result is less than the significance level. F or a typical significance level of \(5 \%\) the notation is \(\alpha=0.05\). F or this significance level, the probability of incorrectly rejecting the null hypothesis when it is actually true is \(5 \%\). If you need more protection from this error, then choose a lower value of \(\alpha\).
- The p-valueis the probability of observing the given sample result under the assumption that thenull hypothesis is true. If thep-value is less than \(\alpha\), then you reject the null hypothesis. For example, if \(\alpha=0.05\) and the \(p\)-value is 0.03 , then you reject the null hypothesis.

The converse is not true. If the p-value is greater than \(\alpha\), you do not accept the null hypothesis. You just have insufficient evidence to reject the null hypothesis (which is the same for practical purposes).
- The outputs for the hypothesis test functions also include confidence intervals. Loosely speaking, a confidence interval is a range of values that have a chosen probability of containing the true hypothesized quantity. Suppose, in our example, 1.15 is inside a \(95 \%\) confidence interval for the mean, \(\mu\). That is equivalent to being unable to reject the null hypothesis at a significance level of 0.05 . Conversely if the \(100(1-\alpha)\) confidence interval does not contain 1.15, then you reject the null hypothesis at the \(\alpha\) level of significance.

\section*{Assumptions}

The difference between hypothesis test procedures often arises from differences in the assumptions that the researcher is willing to make about the data sample. The Z-test assumes that the data represents independent samples from the same normal distribution and that you know the standard deviation, \(\sigma\). Thet-test has the same assumptions except that you estimate the standard deviation using the data instead of specifying it as a known quantity.

Both tests have an associated signal-to-noise ratio:
\[
\begin{aligned}
& z=\frac{\bar{x}-\mu}{\sigma} \quad \text { or } \quad T=\frac{\bar{x}-\mu}{s} \\
& \text { where } \bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n}
\end{aligned}
\]

The signal is the difference between the average and the hypothesized mean. The noise is the standard deviation posited or estimated.

If the null hypothesis is true, then \(Z\) has a standard normal distribution, \(N(0,1)\). Thas a Student's distribution with the degrees of freedom, \(v\), equal to one less than the number of data values.

Given the observed result for Z or T, and knowing their distribution assuming the null hypothesis is true, it is possible to compute the probability (p-value) of observing this result. If the \(p\)-value is very small, then that casts doubt on the truth of the null hypothesis. F or example, suppose that the p-value was 0.001 , meaning that the probability of observing the given \(Z\) (or \(T\) ) was one in a thousand. That should make you skeptical enough about the null hypothesis that you reject it rather than believe that your result was just a lucky 999 to 1 shot.

\section*{Example}

This example uses the gasoline price data in gas.mat. There are two samples of 20 observed gas prices for the months of J anuary and February 1993.
```

load gas
prices = [price1 price2]
prices =
1 1 9 1 1 8
117 115
115}11
116 122
112}11
121 121
115 120
122 122
116 120
118}11
109 120
112 123
1 1 9 1 2 1
112 }10
117 117
113 117
114 120
109 116
109 118
118 125

```

Suppose it is historically true that the standard deviation of gas prices at gas stations around M assachusetts is four cents a gallon. The Z-test is a procedure for testing the null hypothesis that the average price of a gallon of gas in \(J\) anuary (price1) is \(\$ 1.15\).
```

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)
h =
0
pvalue =
0.8668
ci =
1.1340 1.1690

```

The result of the hypothesis test is the bool ean variable, \(h\). When \(h=0\), you do not reject the null hypothesis.
The result suggests that \(\$ 1.15\) is reasonable. The \(95 \%\) confidence interval [1.1340 1.1690] neatly brackets \(\$ 1.15\).

What about February? Try a t-test with price2. Now you are not assuming that you know the standard deviation in price.
```

[h,pvalue,ci] = ttest(price2/100,1.15)
h =
1
pvalue =
4.9517e-04
ci =
1.1675 1.2025

```

With the boolean result, \(\mathrm{h}=1\), you can reject the null hypothesis at the default significance level, 0.05.

It looks like \(\$ 1.15\) is not a reasonable estimate of the gasoline price in February. The low end of the \(95 \%\) confidence interval is greater than 1.15.
The function ttest2 allows you to compare the means of the two data samples.
```

[h,sig,ci] = ttest2(price1,price2)

```
\(\mathrm{h}=\)
1
sig \(=\)
0.0083
ci \(=\)
\(-5.7845 \quad-0.9155\)
The confidence interval (ci above) indicates that gasoline prices were between one and six cents lower in J anuary than February.

The box plot gives the same conclusion graphically. Note that the notches have little, if any, overlap. Refer to "Statistical Plots" for more information about box plots.
```

boxplot(prices,1)
set(gca,'XtickLabel',str2mat('January','February'))
xlabel('Month')
ylabel('Prices (\$0.01)')

```


\section*{Multivariate Statistics}

Multivariate statistics is an omnibus term for a number of different statistical methods. The defining characteristic of these methods is that they all aim to understand a data set by considering a group of variables together rather than focusing on only one variable at a time.

\section*{Principal Components Analysis}

One of the difficulties inherent in multivariate statistics is the problem of visualizing multi-dimensionality. In MATLAB, the plot command displays a graph of the relationship between two variables. The plot3 and surf commands display different three-dimensional views. When there are more than three variables, it stretches the imagination to visualize their relationships.

F ortunately in data sets with many variables, groups of variables often move together. One reason for this is that more than one variable may be measuring the same driving principle governing the behavior of the system. In many systems there are only a few such driving forces. But an abundance of instrumentation allows us to measure dozens of system variables. When this happens, we can take advantage of this redundancy of information. We can simplify our problem by replacing a group of variables with a single new variable.

Principal Components Analysis is a quantitatively rigorous method for achieving this simplification. The method generates a new set of variables, called principal components. Each principal component is a linear combination of the original variables. All the principal components are orthogonal to each other so there is no redundant information. The principal components as a whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for several columns of data. What is so special about the principal component basis?

The first principal component is a single axis in space. When you project each observation on that axis, the resulting values form a new variable. And the variance of this variable is the maximum among all possible choices of the first axis.

The second principal component is another axis in space, perpendicular to the first. Projecting the observations on this axis generates another new variable. The variance of this variable is the maximum among all possible choices of this second axis.

The full set of principal components is as large as the original set of variables. But, it is commonplace for the sum of the variances of the first few principal components to exceed \(80 \%\) of the total variance of the original data. By examining plots of these few new variables, researchers often develop a deeper understanding of the driving forces that generated the original data.

\section*{Example}

Let us look at a sample application that uses nine different indices of the quality of life in 329 U.S. cities. These are climate, housing, health, crime, transportation, education, arts, recreation, and economics. F or each index, higher is better; so, for example, a higher index for crime means a lower crime rate.

We start by loading the data in cities.mat.
\begin{tabular}{lrrl}
\begin{tabular}{l} 
load cities \\
whos \\
Name
\end{tabular} & Size & Bytes & Class \\
& & & \\
categories & \(9 \times 14\) & 252 & char array \\
names & \(329 \times 43\) & 28294 & char array \\
ratings & \(329 \times 9\) & 23688 & double array
\end{tabular}

Grand total is 17234 elements using 52234 bytes
The whos command generates a table of information about all the variables in the workspace. The cities data set contains three variables:
- categories, a string matrix containing the names of the indices.
- names, a string matrix containing the 329 city names.
- ratings, the data matrix with 329 rows and 9 columns.

Let's look at the value of the categories variable: categories categories =
climate housing health
crime
transportation
education
arts recreation economics

Now, let's look at the first several rows of names variable, too.
first5 \(=\) names(1:5,:)
first5 =

Abilene, TX
Akron, OH
Albany, GA
Albany-Troy, NY
Albuquerque, NM
To get a quick impression of the ratings data, make a box plot.
boxplot(ratings,0,'+',0)
set(gca, 'YTicklabel', categories)

These commands generate the plot below. Notethat thereis substantially more variability in the ratings of the arts and housing than in the ratings of crime and climate.


Ordinarily you might also graph pairs of the original variables, but there are 36 two-variable plots. Maybe principal components analysis can reduce the number of variables we need to consider.

Sometimes it makes sense to compute principal components for raw data. This is appropriate when all the variables are in the same units. Standardizing the data is reasonable when the variables are in different units or when the variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard deviation.
```

stdr = std(ratings);
sr = ratings./stdr(ones(329,1),:);

```

Now we are ready to find the principal components.
```

[pcs, newdata, variances, t2] = princomp(sr);

```

\section*{The Principal Components (First Output)}

The first output of the princomp function, pcs, contains the nine principal components. These are the linear combinations of the original variables that generate the new variables.

Let's look at the first three principal component vectors.
\[
\begin{aligned}
& \text { p3 = pcs(:,1:3) } \\
& \text { p3 = }
\end{aligned}
\]

Thelargest weights in thefirst column (first principal component) are thethird and seventh elements corresponding to the variables, arts and health. All the elements of the first principal component are the same sign, making it a weighted average of all the variables.

To show the orthogonality of the principal components note that premultiplying them by their transpose yields the identity matrix.
```

I = p3'*p3
I =

1.0000	0.0000	-0.0000
0.0000	1.0000	-0.0000
-0.0000	-0.0000	1.0000

```

\section*{The Component Scores (Second Output)}

The second output, newdata, is the data in the new coordinate system defined by the principal components. This output is the same size as the input data matrix.

A plot of thefirst two columns of newdata shows the ratings data projected onto the first two principal components.


Note the outlying points in the upper right corner.
The function gname is useful for graphically identifying a few points in a plot like this. You can call gname with a string matrix containing as many case labels as points in the plot. The string matrix names works for labeling points with the city names.
gname(names)
Move your cursor over the plot and click once near each point at the top right. When you finish press the return key. Here is the resulting plot.


The labeled cities are the biggest population centers in the United States. Perhaps we should consider them as a completely separate group. If we call gname without arguments, it labels each point with its row number.


We can create an index variable containing the row numbers of all the metropolitan areas we chose.
```

metro = [l43 65 179 213 234 270 314];
names(metro,:)
ans =
Boston, MA
Chicago, IL
Los Angeles, Long Beach, CA
New York, NY
Philadelphia, PA-NJ
San Francisco, CA
Washington, DC-MD-VA

```

To remove these rows from the ratings matrix:
```

rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];
size(rsubset)
ans =
322 9

```

To practice, repeat the analysis using the variable rsubset as the new data matrix and nsubset as the string matrix of labels.

\section*{The Component Variances (Third Output)}

The third output, variances, is a vector containing the variance explained by the corresponding column of newdata.
```

variances
variances =
3.4083
1.2140
1.1415
0.9209
0.7533
0.6306
0.4930
0.3180
0.1204

```

Y ou can easily calculate the percent of the total variability explained by each principal component.
```

percent_explained = 100*variances/sum(variances)
percent_explained =

```
    37.8699
13.4886
12.6831
10.2324
    8.3698
    7.0062
    5.4783
    3.5338
    1.3378

A "Scree" plot is a pareto plot of the percent variability explained by each principal component.


We can seethat the first three principal components explain roughly two thirds of the total variability in the standardized ratings.

\section*{Hotelling's \(\mathbf{T}^{\mathbf{2}}\) (Fourth Output)}

The last output of the princomp function, t 2 , is Hotelling's \(\mathrm{T}^{2}\), a statistical measure of the multivariate distance of each observation from the center of the data set. This is an analytical way to find the most extreme points in the data.
```

[st2, index] = sort(t2); % Sort in ascending order.
st2 = flipud(st2); % Values in descending order.
index = flipud(index); % Indices in descending order.
extreme = index(1)
extreme =
213
names(extreme,:)
ans =
New York, NY

```

It is not surprising that the ratings for New York are the furthest from the average U.S. town.

\section*{Statistical Plots}

The Statistics Tool box adds specialized plots to the extensive graphics capabilities of MATLAB.
- Box plots are graphs for data sample description. They are also useful for graphic comparisons of the means of many samples (see the discussion of one-way ANOVA on page 1-65).
- Normal probability plots are graphs for determining whether a data sample has normal distribution.
- Quantilequantile plots graphically compare the distributions of two samples.
- Weibull probability plots are graphs for assessing whether data comes from a Weibull distribution.

\section*{Box Plots}

The graph shows an example of a notched box plot.


This plot has several graphic elements:
- The lower and upper lines of the "box" are the 25th and 75th percentiles of the sample. The distance between the top and bottom of the box is the interquartile range.
- The line in the middle of the box is the sample median. If the median is not centered in the box, that is an indication of skewness.
- The "whiskers" are lines extending above and below the box. They show the extent of the rest of the sample (unless there are outliers). Assuming no
outliers, the maximum of the sample is the top of the upper whisker. The minimum of the sample is the bottom of the lower whisker. By default, an outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box.
- The plus sign at the top of the plot is an indication of an outlier in the data. This point may be the result of a data entry error, a poor measurement or a change in the system that generated the data.
- The "notches" in the box are a graphic confidence interval about the median of a sample. Box plots do not have notches by default.

A side-by-side comparison of two notched box plots is the graphical equivalent of a t-test. See the section "Hypothesis Tests" on page 1-85.

\section*{Normal Probability Plots}

A normal probability plot is a useful graph for assessing whether data comes from a normal distribution. Many statistical procedures make the assumption that the underlying distribution of the data is normal, so this plot can provide some assurance that the assumption of normality is not being violated or provide an early warning of a problem with your assumptions.

This example shows a typical normal probability plot.
```

x = normrnd(10,1,25,1);
normplot(x)

```


The plot has three graphic elements. The plus signs show the empirical probability versus the data value for each point in the sample. The solid line connects the 25th and 75th percentiles of the data and represents a robust linear fit (i.e., insensitive to the extremes of the sample). The dashed line extends the solid line to the ends of the sample.

The scale of the \(y\)-axis is not uniform. The y-axis values are probabilities and, as such, go from zero to one. The distance between the tick marks on the y-axis matches the distance between the quantiles of a normal distribution. The quantiles are close together near the median (probability \(=0.5\) ) and stretch out symmetrically moving away from the median. Compare the vertical distance from the bottom of the plot to the probability 0.25 with the distance from 0.25 to 0.50 . Similarly, compare the distance from the top of the plot to the probability 0.75 with the distance from 0.75 to 0.50 .

If all the data points fall near the line, the assumption of normality is reasonable. But, if the data is nonnormal, the plus signs may follow a curve, as in the example using exponential data bel ow.
```

x = exprnd(10,100,1);
normplot(x)

```


This plot is clear evidence that the underlying distribution is not normal.

\section*{Quantile-Quantile Plots}

A quantile-quantile plot is useful for determining whether two samples come from the same distribution (whether normally distributed or not).

The example shows a quantile-quantile plot of two samples from a Poisson distribution.


Even though the parameters and sample sizes are different, the straight line relationship shows that the two samples come from the same distribution.

Like the normal probability plot, the quantile-quantile plot has three graphic elements. The pluses are the quantiles of each sample. By default the number of pluses is the number of data values in the smaller sample. The solid line joins the 25th and 75th percentiles of the samples. The dashed line extends the solid line to the extent of the sample.

The example below shows what happens when the underlying distributions are not the same.
```

x = normrnd(5,1,100,1);
y = weibrnd(2,0.5,100,1);
qqplot(x,y);

```


These samples clearly are not from the same distribution.
It is incorrect to interpret a linear plot as a guarantee that the two samples come from the same distribution. But, for assessing the validity of a statistical procedurethat depends on the two samples coming from the same distribution, a linear quantilequantile plot should be sufficient.

\section*{Weibull Probability Plots}

A Weibull probability plot is a useful graph for assessing whether data comes from a Weibull distribution. Many reliability analyses make the assumption that the underlying distribution of the life times is Weibull, so this plot can provide some assurance that this assumption is not being violated or provide an early warning of a problem with your assumptions.

The scale of the \(y\)-axis is not uniform. The \(y\)-axis values are probabilities and, as such, go from zero to one. The distance between thetick marks on the y-axis matches the distance between the quantiles of a Weibull distribution.

If the data points (pluses) fall near the line, the assumption that the data come from a Weibull distribution is reasonable.

This example shows a typical Weibull probability plot.
\(y=\) weibrnd(2,0.5,100,1);
weibplot(y)
Weibull Probability Plot


\section*{Statistical Process Control (SPC)}

SPC is an omnibus term for a number of methods for assessing and monitoring the quality of manufactured goods. These methods are simple which makes them easy to implement even in a production environment.

\section*{Control Charts}

These graphs were popularized by Walter Shewhart in his work in the 1920s at Western Electric. A control chart is a plot of a measurements over time with statistical limits applied. Actually control chart is a slight misnomer. The chart itself is actually a monitoring tool. The control activity may occur if the chart indicates that the process is changing in an undesirable systematic direction.

The Statistics Tool box supports three common control charts:
- Xbar charts
- S charts
- Exponentially weighted moving average (EWMA) charts.

\section*{Xbar Charts}

Xbar charts are a plot of the average of a sample of a process taken at regular intervals. Suppose we are manufacturing pistons to a tolerance of 0.5
thousandths of an inch. We measure the runout (deviation from circularity in thousandths of an inch) at four points on each piston.
```

load parts
conf = 0.99;
spec = [-0.5 0.5];
xbarplot(runout,conf,spec)

```


The lines at the bottom and the top of the plot show the process specifications. The central line is the average runout over all the pistons. The two lines flanking the center line are the \(99 \%\) statistical control limits. By chance only one measurement in 100 should fall outside these lines. We can see that even in this small run of 36 parts, there are several points outside the boundaries (labeled by their observation numbers). This is an indication that the process mean is not in statistical control. This might not be of much concern in practice, since all the parts are well within specification.

\section*{S Charts}

The \(S\) chart is a plot of the standard deviation of a process taken at regular intervals. The standard deviation is a measure of the variability of a process. So, the plot indicates whether there is any systematic change in the process
variability. Continuing with the piston manufacturing example, we can look at the standard deviation of each set of 4 measurements of runout.


The average runout is about one ten-thousandth of an inch. There is no indication of nonrandom variability.

\section*{EWMA Charts}

The EWMA chart is another chart for monitoring the process average. It operates on slightly different assumptions than the Xbar chart. The mathematical model behind the Xbar chart posits that the process mean is actually constant over time and any variation in individual measurements is due entirely to chance.

The EWMA model is a little looser. Here we assume that the mean may be varying in time. Here is an EWMA chart of our runout example. Compare this with the plot on page 1-111.


\section*{Capability Studies}

Before going into full-scale production, many manufacturers run a pilot study to determine whether their process can actually build parts to the specifications demanded by the engineering drawing.

Using the data from these capability studies with a statistical model allows us to get a preliminary estimate of the percentage of parts that will fall outside the specifications.
```

[p, Cp, Cpk] = capable(mean(runout),spec)
p =
1.3940e-09
Cp =
2.3950
Cpk =
1.9812

```

The result above shows that the probability ( \(p=1.3940 \mathrm{e}-09\) ) of observing an unacceptable runout is extremely low. Cp and Cpk are two popular capability indices.
Cp is the ratio of the range of the specifications to six times the estimate of the process standard deviation.
\[
C_{p}=\frac{U S L-L S L}{6 \sigma}
\]

For a process that has its average value on target, a Cp of one translates to a little more than one defect per thousand. Recently many industries have set a quality goal of one part per million. This would correspond to a \(\mathrm{Cp}=1.6\). The higher the value of Cp the more capable the process.
Cpk is the ratio of difference between the process mean and the closer specification limit to three times the estimate of the process standard deviation.
\[
C_{p k}=\min \left(\frac{\mathrm{USL}-\mu}{3 \sigma}, \frac{\mu-\mathrm{LSL}}{3 \sigma}\right)
\]
where the process mean is \(\mu\). F or processes that do not maintain their average on target, Cpk, is a more descriptive index of process capability.

\section*{Design of Experiments (DOE)}

There is a world of difference between data and information. To extract information from data you have to make assumptions about the system that generated the data. Using these assumptions and physical theory you may be able to develop a mathematical model of the system.

Generally, even rigorously formulated models have some unknown constants. The goal of experimentation is to acquire data that allow us to estimate these constants.

But why do we need to experiment at all? We could instrument the system we want to study and just let it run. Sooner or later we would have all the data we could use.

In fact, this is a fairly common approach. There are three characteristics of historical data that pose problems for statistical modeling:
- Suppose we observe a change in the operating variables of a system followed by a change in the outputs of the system. That does not necessarily mean that the change in the system caused the change in the outputs.
- A common assumption in statistical modeling is that the observations are independent of each other. This is not the way a system in normal operation works.
- Controlling a system in operation often means changing system variables in tandem. But if two variables change together, it is impossible to separate their effects mathematically.

Designed experiments directly address these problems. The overwhelming advantage of a designed experiment is that you actively manipulate the system you are studying.

With DOE you may generate fewer data points than by using passive instrumentation, but the quality of the information you get will be higher.
The Statistics Tool box provides several functions for generating experimental designs appropriate to various situations.

\section*{Full Factorial Designs}

Suppose you want to determine whether the variability of a machining process is due to the difference in the lathes that cut the parts or the operators who run the lathes.

If the same operator always runs a given lathe then you cannot tell whether the machine or the operator is the cause of the variation in the output. By allowing every operator to run every lathe you can separate their effects.

This is a factorial approach. fullfact is the function that generates the design. Suppose we have four operators and three machines. What is the factorial design?
\begin{tabular}{ll}
\(d=\) fullfact \(\left.\left(\begin{array}{ll}4 & 3\end{array}\right]\right)\) \\
\(d=\) & \\
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1 \\
1 & 2 \\
2 & 2 \\
3 & 2 \\
4 & 2 \\
1 & 3 \\
2 & 3 \\
3 & 3 \\
4 & 3
\end{tabular}

Each row of d represents one operator/machine combination. Note that there are \(4 * 3=12\) rows.

One special subclass of factorial designs is when all the variables take only two values. Suppose you want to quickly determine the sensitivity of a process to high and low values of three variables.
\begin{tabular}{lll}
\(d 2=f f 2 n(3)\) \\
\(d 2=\) & \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{tabular}

There are \(2^{3}=8\) combinations to check.

\section*{Fractional Factorial Designs}

One difficulty with factorial designs is that the number of combinations increases exponentially with the number of variables you want to manipulate.

F or example the sensitivity study discussed above might beimpractical if there were seven variables tostudy instead of just three. A full factorial design would require \(2^{7}=128\) runs!

If we assume that the variables do not act synergistically in the system, we can assess the sensitivity with far fewer runs. The theoretical minimum number is eight. To see the design ( X ) matrix we use the hadamard function.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\(\mathrm{X}=\) hadamard(8)} \\
\hline \multicolumn{8}{|l|}{\(\mathrm{X}=\)} \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
\hline 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
\hline 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
\hline 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
\hline
\end{tabular}

The last seven columns are the actual variable settings ( -1 for low, 1 for high.) The first column (all ones) allows us to measure the mean effect in the linear equation, \(y=X \beta+\varepsilon\).

\section*{D-Optimal Designs}

All the designs above were in use by early in the 20th century. In the 1970s statisticians started to use the computer in experimental design by recasting DOE in terms of optimization. A D-optimal design is one that maximizes the determinant of Fisher's information matrix, \(X^{\prime} X\). This matrix is proportional to the inverse of the covariance matrix of the parameters. Somaximizing \(\operatorname{det}\left(X^{\prime} X\right)\) is equivalent to minimizing the determinant of the covariance of the parameters.

A D-optimal design minimizes the volume of the confidence ellipsoid of the regression estimates of the linear model parameters, \(\beta\).

There are several functions in the Statistics Toolbox that generate D-optimal designs. These are cordexch, daugment, dcovary, and rowexch.

\section*{Generating D-Optimal Designs}
cordexch and rowexch are two competing optimization al gorithms for computing a D-optimal design given a model specification.

Both cordexch and rowexch are iterative algorithms. They operate by improving a starting design by making incremental changes to its elements. In the coordinate exchange al gorithm, the increments are theindividual elements of the design matrix. In row exchange, the elements are the rows of the design matrix. Atkinson and Donev (1992) is a reference.

To generate a D-optimal design you must specify the number of inputs, the number of runs, and the order of the model you want to fit.
Both cordexch and rowexch take the following strings to specify the model:
- 'linear' ('l') - the default model with constant and first order terms.
- 'interaction' ('i') - includes constant, linear, and cross product terms.
- 'quadratic' ('q') - interactions plus squared terms.
- 'purequadratic' ('p') - includes constant, linear and squared terms.

Alternatively, you can use a matrix of integers to specify the terms. Details are in the help for the utility function x2fx.

F or a simple example using the coordinate-exchange algorithm consider the problem of quadratic modeling with two inputs. The model form is:
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}{ }^{2}+\beta_{22} x_{2}^{2}+\varepsilon
\]

Suppose we want the D-optimal design for fitting this model with nine runs.
```

settings = cordexch(2,9,'q')
settings =

-1	1
1	1
0	1
1	-1
-1	-1
0	-1
1	0
0	0
-1	0

```

We can plot the columns of settings against each other to get a better picture of the design.
```

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

```


For a simple example using the row-exchange al gorithm, consider the interaction model with two inputs. The model form is:
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\varepsilon
\]

Suppose we want the D-optimal design for fitting this model with four runs.
```

[settings, X] = rowexch(2,4,'i')
settings =

-1	1
-1	-1
1	-1
1	1

X =

1	-1	1	-1
1	-1	-1	1
1	1	-1	-1
1	1	1	1

```

The settings matrix shows how to vary the inputs from run to run. The \(x\) matrix is the design matrix for fitting the above regression model. The first column of X is for fitting the constant term. The last column is the element-wise product of the second and third columns.

The associated plot is simple but elegant.
```

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

```


\section*{Augmenting D-Optimal Designs}

In practice, experimentation is an iterative process. We often want to add runs to a completed experiment to learn more about our system. The function daugment allows you choose these extra runs optimally.

Suppose we have executed the eight-run design below for fitting a linear model to four input variables.
```

settings = cordexch(4,8)
settings =

1	-1	1	1
-1	-1	1	-1
-1	1	1	1
1	1	1	-1
-1	1	-1	1
1	-1	-1	1
-1	-1	-1	-1
1	1	-1	-1

```

This design is adequateto fit thelinear model for four inputs, but cannot fit the six cross-product (interaction) terms. Suppose we are willing to do eight more runs to fit these extra terms. Here's how.
[augmented, X] = daugment(settings,8,'i');
augmented
```

augmented =

1	-1	1	1
-1	-1	1	-1
-1	1	1	1
1	1	1	-1
-1	1	-1	1
1	-1	-1	1
-1	-1	-1	-1
1	1	-1	-1
-1	-1	-1	1
1	1	1	1
-1	-1	1	1
-1	1	1	-1
1	-1	1	-1
1	-1	-1	-1
-1	1	-1	-1
1	1	-1	1

info = X'*X
info =

```
\begin{tabular}{rrrrrrrrrrr}
16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16
\end{tabular}

The augmented design is orthogonal, since \(X^{\prime}\) * \(X\) is a multiple of the identity matrix. In fact, this design is the same as a \(2^{4}\) factorial design.

\section*{Designing Experiments with Uncontrolled Inputs}

Sometimes it is impossible to control every experimental input. But you may know the values of some inputs in advance. An example is the time each run takes place. If a process is experiencing linear drift, you may want to include the time of each test run as a variable in the model.

The function dcovary allows you to choose the settings for each run in order to maximize your information despite a linear drift in the process.
Suppose we want to execute an eight-run experiment with threefactors that is optimal with respect to a linear drift in the response over time. First we create our drift input variable. Note, that drift is normalized to have mean zero. Its minimum is -1 and its maximum is +1 .
```

drift = (linspace(-1, 1, 8))'
drift =
-1.0000
-0.7143
-0.4286
-0.1429
0.1429
0.4286
0.7143
1.0000
settings = dcovary(3,drift,'linear')
settings =

```
\begin{tabular}{rrrr}
1.0000 & 1.0000 & -1.0000 & -1.0000 \\
-1.0000 & -1.0000 & -1.0000 & -0.7143 \\
-1.0000 & 1.0000 & 1.0000 & -0.4286 \\
1.0000 & -1.0000 & 1.0000 & -0.1429 \\
-1.0000 & 1.0000 & -1.0000 & 0.1429 \\
1.0000 & 1.0000 & 1.0000 & 0.4286 \\
-1.0000 & -1.0000 & 1.0000 & 0.7143 \\
1.0000 & -1.0000 & -1.0000 & 1.0000
\end{tabular}

\section*{Demos}

The Statistics Tool box has demonstration programs that create an interactive environment for exploring the probability distribution, random number generation, curve fitting, and design of experiments functions.
\begin{tabular}{l|l}
\hline Demo & Purpose \\
\hline disttool & Graphic interaction with probability distributions. \\
\hline polytool & Interactive graphic prediction of polynomial fits. \\
\hline randtool & Interactive control of random number generation. \\
\hline rsmdemo & Design of Experiments and regression modeling. \\
\hline
\end{tabular}

\section*{The disttool Demo}
disttool is a graphic environment for developing an intuitive understanding of probability distributions.

The disttool demo has the following features:
- A graph of the cdf (pdf) for the given parameters of a distribution.
- A pop-up menu for changing the distribution function.
- A pop-up menu for changing the function type (cdf \(<->\) pdf).
- Sliders to change the parameter settings.
- Data entry boxes to choose specific parameter values.
- Data entry boxes to change the limits of the parameter sliders.
- Draggablehorizontal and vertical referencelines to dointeractiveevaluation of the function at varying values.
- A data entry box to evaluate the function at a specific \(x\)-value.
- For cdf plots, a data entry box on the probability axis (y-axis) to find critical values corresponding to a specific probability.
- A Close button to end the demonstration.


\section*{The polytool Demo}

The polytool demois an interactivegraphicenvironment for polynomial curve fitting and prediction.

The polytool demo has the following features:
- A graph of the data, the fitted polynomial, and global confidence bounds on a new predicted value.
- y-axis text to display the predicted \(y\)-value and its uncertainty at the current \(x\)-value.
- A data entry box to change the degree of the polynomial fit.
- A data entry box to evaluate the polynomial at a specific x-value.
- A draggable vertical reference line to do interactive evaluation of the polynomial at varying \(x\)-values.
- A Close button to end the demonstration.

Y ou can use polytool to do curve fitting and prediction for any set of \(x-y\) data, but, for the sake of demonstration, the Statistics Toolbox provides a dataset (polydata.mat) to teach some basic concepts.
To start the demonstration you must first load the dataset.
```

load polydata
who
Your variables are:
x x1 y y

```

The variables \(x\) and \(y\) are observations made with error from a cubic polynomial. The variables x 1 and y 1 are data points from the "true" function without error.

If you do not specify the degree of the polynomial, polytool does a linear fit to the data.
polytool(x,y)


The linear fit is not very good. The bulk of the data with x-values between zero and two has a steeper slope than the fitted line. The two points to the right are dragging down the estimate of the slope.
Go to the data entry box at the top and type 3 for a cubic model. Then, drag the vertical reference line to the \(x\)-value of two (or type 2 in the \(x\)-axis data entry box).


This graph shows a much better fit to the data. The confidence bounds are closer together indicating that there is less uncertainty in prediction. The data at both ends of the plot tracks the fitted curve.
The true function in this case is cubic.
\[
\begin{aligned}
& y=4+4.3444 x-1.4533 x^{2}+0.1089 x^{3}+\varepsilon \\
& \varepsilon \sim N(0,0.11)
\end{aligned}
\]

To superimpose the "true" function on the plot use the command:
plot (x1, y1)


The true function is quite close to the fitted polynomial in the region of the data. Between the two groups of data points the two functions separate, but both fall inside the \(95 \%\) confidence bounds.

If the cubic polynomial is a good fit, it is tempting to try a higher order polynomial to see if even more precise predictions are possible.

Since the true function is cubic, this amounts to overfitting the data. Use the data entry box for degree and type 5 for a quintic model.


The resulting fit again does well predicting the function near the data points. But, in the region between the data groups, the uncertainty of prediction rises dramatically.

This bulge in the confidence bounds happens because the data really do not contain enough information to estimate the higher order polynomial terms precisely, so even interpolation using polynomials can be risky in some cases.

\section*{The randrool Demo}
randtool is a graphic environment for generating random samples from various probability distributions and displaying the sample histogram.

The randtool demo has the following features:
- A histogram of the sample.
- A pop-up menu for changing the distribution function.
- Sliders to change the parameter settings.
- A data entry box to choose the sample size.
- Data entry boxes to choose specific parameter values.
- Data entry boxes to change the limits of the parameter sliders.
- An Output button to output the current sample to the variable ans.
- A Resample button to allow repetitive sampling with constant sample size and fixed parameters.
- A Close button to end the demonstration


\section*{The rsmdemo Demo}
rsmdemo is an interactive graphic environment that demonstrates design of experiments and surface fitting through the simulation of a chemical reaction. The goal of the demo is to find the levels of the reactants needed to maximize the reaction rate.

There are two parts to the demo:
1 Compare data gathered through trial and error with data from a designed experiment.

2 Compare response surface (polynomial) modeling with nonlinear modeling.

\section*{Part 1}

Begin the demo by using the sliders in the Reaction Simulator to control the partial pressures of three reactants: Hydrogen, n-Pentane, and I sopentane. Each time you click the Run button, the levels for the reactants and results of the run are entered in the Trial and Error Data window.

Based on the results of previous runs, you can change the levels of the reactants to increase the reaction rate. (The results are determined using an underlying model that takes into account the noise in the process, so even if you keep all of the levels the same, the results will vary from run to run.) You are allotted a budget of 13 runs. When you have completed the runs, you can use the Plot menu on the Trial and Error Data window to plot the relationships between the reactants and the reaction rate, or click the Analyze button. When you click Analyze, rsmdemo calls the rstool function, which you can then use to try to optimize the results.)

Next, perform another set of 13 runs, this time from a designed experiment. In the Experimental Design Data window, click the Do Experiment button. rsmdemo calls the cordexch function to generate a D-optimal design, and then, for each run, computes the reaction rate.

Now use the Plot menu on the Experimental Design Data window to plot the relationships between the levels of the reactants and the reaction rate, or click the Response Surface button to call rstool to find the optimal levels of the reactants.

Compare the analysis results for the two sets of data. It is likely (though not certain) that you'll find some or all of these differences:
- You can fit a full quadratic model with the data from the designed experiment, but the trial and error data may be insufficient for fitting a quadratic model or interactions model.
- Using the data from the designed experiment, you are more likely to be able to find levels for the reactants that result in the maximum reaction rate.

Even if you find the best settings using the trial and error data, the confidence bounds are likely to be wider than those from the designed experiment.

\section*{Part 2}

Now analyze the experimental design data with a polynomial model and a nonlinear model, and comparing the results. The true model for the process, which is used to generate the data, is actually a nonlinear model. However, within the range of the data, a quadratic model approximates the true model quite well.

To see the polynomial model, click the Response Surface button on the Experimental Design Data window. rsmdemo calls rstool, which fits a full quadratic model to the data. Drag the referencelines to change the levels of the reactants, and find the optimal reaction rate. Observe the width of the confidence intervals.

N ow click the Nonlinear Model button on the Experimental Design Data window. rsmdemo calls nlintool, which fits a Hougen-Watson model to the data. As with the quadratic model, you can drag the reference lines to change the reactant levels. Observe the reaction rate and the confidence intervals.

Compare the analysis results for the two models. Even though the true model is nonlinear, you may find that the polynomial model provides a good fit. Because polynomial models are much easier to fit and work with than nonlinear models, a polynomial model is often preferable even when modeling a nonlinear process. Keep in mind, however, that such models are unlikely to be reliable for extrapolating outside the range of the data.

\section*{References}

Atkinson, A. C., and A. N. Donev, Optimum Experimental Designs, Oxford Science Publications 1992.

Bates, D. and D. Watts. Nonlinear Regression Analysis and Its Applications, J ohn Wiley and Sons. 1988. pp. 271-272.

Bernoulli, J ., Ars Conjectandi, Basiliea: Thurnisius [11.19], 1713
Chatterjee, S. and A. S. Hadi. Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science, 1986. pp. 379-416.

Efron, B., and R. J. Tibshirani. An Introduction to theBootstrap, Chapman and Hall, New York. 1993.

Evans, M., N. Hastings, and B. Peacock. Statistical Distributions, Second Edition. J ohn Wiley and Sons, 1993.

Hald, A., Statistical Theory with Engineering Applications, J ohn Wiley and Sons, 1960. p. 647.
Hogg, R. V., and J. Ledolter. Engineering Statistics. MacMillan Publishing Company, 1987.

J ohnson, N., and S. Kotz. Distributions in Statistics: Continuous Uni variate Distributions. J ohn Wiley and Sons, 1970.

M oore, J., Total Biochemical Oxygen Demand of Dairy Manures. Ph.D. thesis. University of Minnesota, Department of Agricultural Engineering, 1975.

Poisson, S. D., Recherches sur la Probabilité des J ugements en Matiere Criminelle et en Metière Civile, Précédées des Regles Générales du Calcul des Probabilitiés. Paris: Bachelier, Imprimeur-Libraire pour les Mathematiques, 1837.
"Student," On the Probable Error of the Mean. Biometrika, 6:1908. pp. 1-25.
Weibull, W., A Statistical Theory of the Strength of Materials. Ingeniors Vetenskaps Akademiens H andlingar, Royal Swedish Institute for Engineering Research. Stockholm, Sweden, No. 153. 1939.

Reference

The Statistics Tool box provides several categories of functions. These categories appear in the table below.
\begin{tabular}{l|l}
\hline The Statistics Toolbox's Main Categories of Functions \\
\hline Probability & Probability distribution functions. \\
\hline Descriptive & Descriptive statistics for data samples. \\
\hline Plots & Statistical plots. \\
\hline SPC & Statistical Process Control. \\
\hline \begin{tabular}{l} 
Cluster \\
Analysis
\end{tabular} & \begin{tabular}{l} 
Grouping items with similar characteristics into \\
clusters.
\end{tabular} \\
\hline Linear & Fitting linear models to data. \\
\hline Nonlinear & Fitting nonlinear regression models. \\
\hline DOE & Design of Experiments. \\
\hline PCA & Principal Components Analysis. \\
\hline Hypotheses & Statistical tests of hypotheses. \\
\hline File I/O & \begin{tabular}{l} 
Reading data from and writing data to operating-system \\
files.
\end{tabular} \\
\hline Demos & Demonstrations. \\
\hline Data & Data for examples. \\
\hline
\end{tabular}

The following pages contain tables of functions from each of these specific areas. The first seven tables contain probability distribution functions. The remaining tables describe the other categories of functions.
\begin{tabular}{l|l}
\hline & Parameter Estimation \\
\hline betafit & Parameter estimation for the beta distribution. \\
\hline betalike & Beta log-likelihood function. \\
\hline binofit & Parameter estimation for the binomial distribution. \\
\hline expfit & Parameter estimation for the exponential distribution. \\
\hline gamfit & Parameter estimation for the gamma distribution. \\
\hline gamlike & Gamma log-likelihood function. \\
\hline mle & Maximum likelihood estimation. \\
\hline normlike & Normal log-likelihood function. \\
\hline normfit & Parameter estimation for the normal distribution. \\
\hline poissfit & Parameter estimation for the Poisson distribution. \\
\hline unifit & Cumulative Distribution Functions (cdf) \\
\hline & Beta cdf. \\
\hline & Binomial cdf. \\
\hline betacdf & Parameterized cdf routine. \\
\hline binocdf & Chi-square cdf. \\
\hline cdf & Exponential cdf. \\
\hline chi2cdf & F cdf. \\
\hline expcdf & Gamma cdf. \\
\hline fcdf & Geometric cdf. \\
\hline gamcdf & Hypergeometric cdf. \\
\hline geocdf & hygecdf
\end{tabular}
\begin{tabular}{l|l}
\hline & Cumulative Distribution Functions (cdf) (Continued) \\
\hline logncdf & Lognormal cdf. \\
\hline nbincdf & Negative binomial cdf. \\
\hline ncfcdf & Noncentral F cdf. \\
\hline nctcdf & Noncentral t cdf. \\
\hline ncx2cdf & Noncentral Chi-square cdf. \\
\hline normcdf & Normal (Gaussian) cdf. \\
\hline poisscdf & Poisson cdf. \\
\hline raylcdf & Rayleigh cdf. \\
\hline tcdf & Student's t cdf. \\
\hline unidcdf & Discrete uniform cdf. \\
\hline unifcdf & Continuous uniform cdf. \\
\hline weibcdf & Weibull cdf. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Probability Density Functions (pdf) \\
\hline betapdf & Beta pdf. \\
\hline binopdf & Binomial pdf. \\
\hline chi2pdf & Chi-square pdf. \\
\hline exppdf & Exponential pdf. \\
\hline fpdf & F pdf. \\
\hline gampdf & Gamma pdf. \\
\hline geopdf & Geometric pdf. \\
\hline hygepdf & Hypergeometric pdf. \\
\hline
\end{tabular}

\section*{Probability Density Functions (pdf) (Continued)}
\begin{tabular}{l|l|}
\hline normpdf & Normal (Gaussian) pdf. \\
\hline lognpdf & Lognormal pdf. \\
\hline nbinpdf & Negative binomial pdf. \\
\hline ncfpdf & Noncentral F pdf. \\
\hline nctpdf & Noncentral t pdf. \\
\hline ncx2pdf & Noncentral Chi-square pdf. \\
\hline pdf & Parameterized pdf routine. \\
\hline poisspdf & Poisson pdf. \\
\hline raylpdf & Rayleigh pdf. \\
\hline tpdf & Student's t pdf. \\
\hline unidpdf & Discrete uniform pdf. \\
\hline unifpdf & Continuous uniform pdf. \\
\hline weibpdf & Weibull pdf. \\
\hline
\end{tabular}

\section*{Inverse Cumulative Distribution Functions}
\begin{tabular}{l|l|}
\hline betainv & Beta critical values. \\
\hline binoinv & Binomial critical values. \\
\hline chi2inv & Chi-square critical values. \\
\hline expinv & Exponential critical values. \\
\hline finv & F critical values. \\
\hline gaminv & Gamma critical values. \\
\hline geoinv & Geometric critical values. \\
\hline
\end{tabular}

\section*{Inverse Cumulative Distribution Functions (Continued)}
\begin{tabular}{l|l}
\hline hygeinv & Hypergeometric critical values. \\
\hline logninv & Lognormal critical values. \\
\hline nbininv & Negative binomial critical values \\
\hline ncfinv & Noncentral F critical values. \\
\hline nctinv & Noncentral t critical values. \\
\hline ncx2inv & Noncentral Chi-square critical values. \\
\hline icdf & Parameterized inverse distribution routine. \\
\hline norminv & Normal (Gaussian) critical values. \\
\hline poissinv & Poisson critical values. \\
\hline raylinv & Rayleigh critical values. \\
\hline tinv & Student's t critical values. \\
\hline unidinv & Discrete uniform critical values. \\
\hline unifinv & Continuous uniform critical values. \\
\hline weibinv & Weibull critical values. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Random Number Generators \\
\hline betarnd & Beta random numbers. \\
\hline binornd & Binomial random numbers. \\
\hline chi2rnd & Chi-square random numbers. \\
\hline exprnd & Exponential random numbers. \\
\hline frnd & F random numbers. \\
\hline gamrnd & Gamma random numbers. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Random Number Generators (Continued) \\
\hline geornd & Geometric random numbers. \\
\hline hygernd & Hypergeometric random numbers. \\
\hline lognrnd & Lognormal random numbers. \\
\hline nbinrnd & Negative binomial random numbers. \\
\hline ncfrnd & Noncentral F random numbers. \\
\hline nctrnd & Noncentral t random numbers. \\
\hline ncx2rnd & Noncentral Chi-square random numbers. \\
\hline normrnd & Normal (Gaussian) random numbers. \\
\hline poissrnd & Poisson random numbers. \\
\hline raylrnd & Rayleigh random numbers. \\
\hline random & Parameterized random number routine. \\
\hline trnd & Student's t random numbers. \\
\hline unidrnd & Discrete uniform random numbers. \\
\hline unifrnd & Continuous uniform random numbers. \\
\hline weibrnd & Weibull random numbers. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Moments of Distribution Functions \\
\hline betastat & Beta mean and variance. \\
\hline binostat & Binomial mean and variance. \\
\hline chi2stat & Chi-square mean and variance. \\
\hline expstat & Exponential mean and variance. \\
\hline fstat & F mean and variance. \\
\hline gamstat & Gamma mean and variance. \\
\hline geostat & Geometric mean and variance. \\
\hline hygestat & Hypergeometric mean and variance. \\
\hline lognstat & Lognormal mean and variance. \\
\hline nbinstat & Negative binomial mean and variance. \\
\hline ncfstat & Noncentral F mean and variance. \\
\hline nctstat & Noncentral t mean and variance. \\
\hline ncx2stat & Noncentral Chi-square mean and variance. \\
\hline normstat & Normal (Gaussian) mean and variance. \\
\hline poisstat & Poisson mean and variance. \\
\hline raylstat & Rayleigh mean and variance. \\
\hline tstat & Student's t mean and variance. \\
\hline unidstat & Discrete uniform mean and variance. \\
\hline unifstat & Continuous uniform mean and variance. \\
\hline weibstat & Weibull mean and variance. \\
\hline
\end{tabular}

\section*{Descriptive Statistics}
\begin{tabular}{|l|l|}
\hline corrcoef & Correlation coefficients (in MATLAB). \\
\hline cov & Covariance matrix (in MATLAB). \\
\hline harmmean & Geometric mean. \\
\hline iqr & Harmonic mean. \\
\hline kurtosis & Interquartile range. \\
\hline mad & Meanle kurtosis. \\
\hline mean & Arithmetic average (in MATLAB). \\
\hline median & 50th percentile (in MATLAB). \\
\hline moment & Central moments of all orders. \\
\hline nanmax & Average ignoring missing data. \\
\hline nanmean & Median ignoring missing data. \\
\hline nanmedian & Minimum ignoring missing data. \\
\hline nanmin & Standard deviation ignoring missing data. \\
\hline nanstd & Sum ignoring missing data. \\
\hline nansum & Empirical percentiles of a sample. \\
\hline prctile & Sample range. \\
\hline range & Sample skewness. \\
\hline skewness & Standard deviation (in MATLAB). \\
\hline std & Trimmed mean. \\
\hline trimmean & Variance. \\
\hline var & \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Statistical Plotting \\
\hline boxplot & Box plots. \\
\hline errorbar & Error bar plot. \\
\hline fsurfht & Interactive contour plot of a function. \\
\hline gline & Interactive line drawing. \\
\hline gname & Interactive point labeling. \\
\hline lsline & Add least-squares fit line to plotted data. \\
\hline normplot & Normal probability plots. \\
\hline pareto & Pareto charts. \\
\hline qqplot & QuantileQuantile plots. \\
\hline rcoplot & Regression case order plot. \\
\hline refcurve & Reference polynomial. \\
\hline refline & Reference line. \\
\hline surfht & Interactive interpolating contour plot. \\
\hline weibplot & Weibull plotting. \\
\hline
\end{tabular}

\section*{Statistical Process Control}
\begin{tabular}{l|l}
\hline capable & Quality capability indices. \\
\hline capaplot & Plot of process capability. \\
\hline ewmaplot & Exponentially weighted moving average plot. \\
\hline histfit & Histogram and normal density curve. \\
\hline normspec & Plot normal density between limits. \\
\hline schart & Time plot of standard deviation. \\
\hline xbarplot & Time plot of means. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Cluster Analysis \\
\hline cluster & Create clusters from linkage output. \\
\hline clusterdata & Create clusters from a dataset. \\
\hline cophenet & Calculate the cophenetic correlation coefficient. \\
\hline dendrogram & Plot a hierarchical tree in a dendrogram graph. \\
\hline inconsistent & \begin{tabular}{l} 
Calculate the inconsistency values of objects in a cluster \\
hierarchy tree.
\end{tabular} \\
\hline linkage & \begin{tabular}{l} 
Link objects in a dataset into a hierarchical tree of \\
binary clusters.
\end{tabular} \\
\hline pdist & \begin{tabular}{l} 
Calculate the pairwise distance between objects in a \\
dataset.
\end{tabular} \\
\hline squareform & \begin{tabular}{l} 
Reformat output of pdist function from vector to square \\
matrix.
\end{tabular} \\
\hline zscore & \begin{tabular}{l} 
Normalize a dataset before calculating the distance.
\end{tabular} \\
\hline
\end{tabular}

\section*{Linear Models}
\begin{tabular}{l|l}
\hline anova1 & One-way Analysis of Variance (ANOVA). \\
\hline anova2 & Two-way Analysis of Variance. \\
\hline lscov & Regression given a covariance matrix (in MATLAB). \\
\hline polyconf & Polynomial prediction with confidence intervals. \\
\hline polyfit & Polynomial fitting (in MATLAB). \\
\hline polyval & Polynomial prediction (in MATLAB). \\
\hline regress & Multiple linear regression. \\
\hline ridge & Ridge regression. \\
\hline rstool & Response surface tool. \\
\hline stepwise & Stepwise regression GUI. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Nonlinear Regression \\
\hline nlinfit & Nonlinear least-squares fitting. \\
\hline nlintool & Prediction graph for nonlinear fits. \\
\hline nlparci & Confidence intervals on parameters. \\
\hline nlpredci & Confidence intervals for prediction. \\
\hline nnls & Nonnegative least squares (in MATLAB). \\
\hline
\end{tabular}

\section*{Design of Experiments}
\begin{tabular}{l|l}
\hline & Design of Experiments \\
\hline cordexch & D-optimal design using coordinate exchange. \\
\hline daugment & D-optimal augmentation of designs. \\
\hline dcovary & D-optimal design with fixed covariates. \\
\hline ff2n & Two-level full factorial designs. \\
\hline fullfact & Mixed level full factorial designs. \\
\hline hadamard & Hadamard designs (in MATLAB). \\
\hline rowexch & D-optimal design using row exchange. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Principal Components Analysis \\
\hline barttest & Bartlett's test. \\
\hline pcacov & PCA from covariance matrix. \\
\hline pcares & Residual srom PCA. \\
\hline princomp & PCA from raw data matrix. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Hypothesis Tests \\
\hline ranksum & Wilcoxon rank sum test. \\
\hline signrank & Wilcoxon signed rank test. \\
\hline signtest & Sign test for paired samples. \\
\hline ttest & One samplet-test. \\
\hline ttest2 & Two samplet-test. \\
\hline ztest & Z-test. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline & File I/O \\
\hline caseread & Read casenames from a file. \\
\hline casewrite & Write casenames from a string matrix to a file. \\
\hline tblread & Retrieve tabular data from the file system. \\
\hline tblwrite & Write data in tabular form to the file system. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline & Demonstrations \\
\hline disttool & Interactive exploration of distribution functions. \\
\hline randtool & Interactive random number generation. \\
\hline polytool & Interactive fitting of polynomial models. \\
\hline rsmdemo & Interactive process experimentation and analysis. \\
\hline statdemo & Demonstrates capabilities of the Statistics Tool box. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & Data \\
\hline census.mat & U. S. Population 1790 to 1980. \\
\hline cities.mat & Names of U.S. metropolitan areas. \\
\hline discrim.mat & Classification data. \\
\hline gas.mat & Gasoline prices. \\
\hline hald.mat & Hald data. \\
\hline hogg.mat & Bacteria counts from milk shipments. \\
\hline lawdata.mat & GPA versus LSAT for 15 law schools. \\
\hline mileage.mat & Mileage data for three car models from two factories. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline & Data (Continued) \\
\hline moore.mat & Five factor - one response regression data. \\
\hline parts.mat & Dimensional runout on 36 circular parts. \\
\hline popcorn.mat & Data for popcorn example. \\
\hline polydata.mat & Data for polytool demo. \\
\hline reaction.mat & Reaction kinetics data. \\
\hline sat.dat & ASCII data for tblread example. \\
\hline
\end{tabular}

Purpose

\section*{Syntax}

Description

One-way Analysis of Variance (ANOVA).
```

p = anova1(X)
p = anova1(x,group)

```
anova1 (X) performs a balanced one-way ANOVA for comparing the means of two or more columns of data on the sample in \(x\). It returns the \(p\)-value for the null hypothesis that the means of the columns of \(x\) are equal. If the \(p\)-value is near zero, this casts doubt on the null hypothesis and suggests that the means of the columns are, in fact, different.
anova1 ( x, group) performs a one-way ANOVA for comparing the means of two or more samples of data in \(x\) indexed by the vector, group. The input, group, identifies the group of the corresponding element of the vector \(x\).

The values of group are integers with minimum equal to one and maximum equal to the number of different groups to compare. There must be at least one element in each group. This two-input form of anova1 does not require equal numbers of elements in each group, so it is appropriate for unbalanced data.

The choice of a limit for the p-value to determine whether the result is "statistically significant" is left to the researcher. It is common to declare a result significant if the p-value is less than 0.05 or 0.01 .
anova1 also displays two figures.
The first figure is the standard ANOVA table, which divides the variability of the data in X into two parts:
- The variability due to the differences among the column means.
- The variability due to the differences between the data in each column and the column mean.

The ANOVA table has five columns:
- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows the F statistic, which is the ratio of the MS's.

The \(p\)-value is a function (fcdf) of \(F\). As \(F\) increases the \(p\)-value decreases.
The second figure displays box plots of each column of \(x\). Large differences in the center lines of the box plots correspond to large values of \(F\) and correspondingly small p-values.

\section*{Examples}

The five columns of \(x\) are the constants one through five plus a random normal disturbance with mean zero and standard deviation one. The ANOVA procedure detects the difference in the column means with great assurance. The probability ( \(p\) ) of observing the sample \(x\) by chance given that there is no difference in the column means is less than 6 in 100,000.
```

x = meshgrid(1:5)
x =

1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

x = x + normrnd(0,1,5,5)
x =

2.1650	3.6961	1.5538	3.6400	4.9551
1.6268	2.0591	2.2988	3.8644	4.2011
1.0751	3.7971	4.2460	2.6507	4.2348
1.3516	2.2641	2.3610	2.7296	5.8617
0.3035	2.8717	3.5774	4.9846	4.9438

p = anova1(x)
p =
5.9952e-05

```

\section*{ANOVA Table}
\begin{tabular}{lcccc} 
Source & SS & df & MS & F \\
Columns & 32.93 & 4 & 8.232 & 11.26 \\
Error & 14.62 & 20 & 0.7312 & \\
Total & 47.55 & 24 & &
\end{tabular}


The following example comes from a study of material strength in structural beams Hogg (1987). The vector, strength, measures the deflection of a beam in thousandths of an inch under 3,000 pounds of force. Stronger beams deflect less. The civil engineer performing the study wanted to determine whether the strength of steel beams was equal to the strength of two more expensive alloys. Steel is coded 1 in the vector, alloy. The other materials are coded 2 and 3.
```

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];
alloy =[[1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];

```

Though alloy is sorted in this example, you do not need to sort the grouping variable.
```

p = anova1(strength,alloy)
p =
1.5264e-04

ANOVA Table				
Source	SS	df	MS	F
Columns	184.8	2	92.4	15.4
Error	102	17	6	
Total	286.8	19		

```


The \(p\)-value indicates that the three alloys are significantly different. The box pl ot confirms this graphically and shows that thesteel beams deflect morethan the more expensive alloys.

\section*{References}

Hogg, R. V., and J. Ledolter. Enginering Statistics. MacMillan Publishing Company, 1987.

\section*{Purpose Two-way Analysis of Variance (ANOVA).}

\section*{Syntax \(\quad p=\operatorname{anova2}(X, r e p s)\)}

Description anova2(X, reps) performs a balanced two-way ANOVA for comparing the means of two or more columns and two or more rows of the sample in \(X\). The data in different columns represent changes in onefactor. The data in different rows represent changes in the other factor. If there is more than one observation per row-column pair, then the argument, reps, indicates the number of observations per "cell."

The matrix below shows the format for a set-up where the column factor has two levels, the row factor has three levels, and there are two replications. The subscripts indicate row, column and replicate, respectively.
\[
\left[\begin{array}{ll}
x_{111} & x_{121} \\
x_{112} & x_{122} \\
x_{211} & x_{221} \\
x_{212} & x_{222} \\
x_{311} & x_{321} \\
x_{312} & x_{322}
\end{array}\right]
\]
anova2 returns the p-values for the null hypotheses that the means of the columns and the means of the rows of \(x\) are equal. If any \(p\)-value is near zero, this casts doubt on the null hypothesis and suggests that the means of the source of variability associated with that p-value are, in fact, different.

The choice of a limit for the \(p\)-value to determine whether the result is "statistically significant" is left to the researcher. It is common to dedare a result significant if the p -value is less than 0.05 or 0.01 .
anova2 also displays a figure showing the standard ANOVA table, which divides the variability of the data in \(x\) into three or four parts depending on the value of reps:
- The variability due to the differences among the column means.
- The variability due to the differences among the row means.
- The variability due to the interaction between rows and columns (if reps is greater than its default value of one.)
- The remaining variability not explained by any systematic source.

The ANOVA table has five columns:
- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows the F statistics, which is the ratio of the mean squares.

The \(p\)-value is a function (fcdf) of \(F\). As \(F\) increases the \(p\)-value decreases.

\section*{Examples}

The data below comes from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air.) The study popped a batch of
each brand three times with each popper. The values are the yield in cups of popped popcorn.
```

load popcorn
popcorn
popcorn =

5.5000	4.5000	3.5000
5.5000	4.5000	4.0000
6.0000	4.0000	3.0000
6.5000	5.0000	4.0000
7.0000	5.5000	5.0000
7.0000	5.0000	4.5000

p = anova2(popcorn,3)
p =
0.0000 0.0001 0.7462
ANOVA Table

Source	SS	df	MS	F
Columns	15.75	2	7.875	56.7
Rows	4.5	1	4.5	32.4
Interaction	0.08333	2	0.04167	0.3
Error	1.667	12	0.1389	
Total	22	17		

```

The vector, p, shows the p-values for the three brands of popcorn 0.0000, the two popper types 0.0001, and the interaction between brand and popper type 0.7462 . These values indicate that both popcorn brand and popper type affect the yield of popcorn, but thereis no evidence of a synergistic (interaction) effect of the two.

The conclusion is that you can get the greatest yield using the Gourmet brand and an Air popper (the three values located in popcorn(4:6,1)).

Reference
Hogg, R. V. and J. Ledolter. Engineering Statistics. MacMillan Publishing Company, 1987.

\section*{Purpose Bartlett's test for dimensionality.}
Syntax

ndim = barttest(x,alpha)

[ndim, prob,chisquare] = barttest(x,alpha)
Descriptionndim = barttest(x, alpha) returns the number of dimensions necessary toexplain the nonrandom variation in the the data matrix \(x\), using thesignificance probability alpha. The dimension is determined by a series ofhypothesis tests. The test for ndim = 1 tests the hypothesis that the variancesof the data values along each principal component are equal; the test for ndim\(=2\) tests the hypothesis that the variances al ong the second through lastcomponents are equal; and so on.
[ndim, prob, chisquare] = barttest(x,alpha) returns the number of
dimensions, the significance values for the hypothesis tests, and the \(\chi^{2}\) values
associated with the tests.

\section*{Example}
```

x = mvnrnd([0 0], [1 0.99; 0.99 1],20);
x(:,3:4) = mvnrnd([0 0], [1 0.99; 0.99 1],20);
x(:,5:6) = mvnrnd([0 0], [1 0.99; 0.99 1],20);
[ndim, prob] = barttest(x,0.05)
ndim =
3
prob =
0
0
0
0.5081
0.6618
1.0000

```
See Also princomp, pcacov, pcares

\section*{betacdf}

Purpose Beta cumulative distribution function (cdf).

\section*{Syntax \\ \[
P=\operatorname{betacdf}(X, A, B)
\]}

Description
betacdf \((\mathrm{X}, \mathrm{A}, \mathrm{B})\) computes the beta cdf with parameters A and B at the values in X . The arguments \(\mathrm{X}, \mathrm{A}\), and B must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters A and B must both be positive and x must lie on the interval [ 01 ].

The beta cdf is:
\[
p=F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
\]

The result, p , is the probability that a single observation from a beta distribution with parameters a and b will fall in the interval \([0 \mathrm{x}]\).

\section*{Examples}
```

x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)
p =
0.0280 0.2160 0.5000 0.7840 0.9720
a = [llll
p = betacdf(0.5,a,a)
p =
0.5000 0.5000 0.5000

```

Purpose
Parameter estimates and confidence intervals for beta distributed data.

Example

\section*{Reference}

See Also betalike, mle
```

Hahn, Gerald J ., \& Shapiro, Samuel, S. "Statistical Models in Engineering", Wiley Classics Library J ohn Wiley \& Sons, New York. 1994. p. 95.

```
r = betarnd(4,3,100,1);
```

r = betarnd(4,3,100,1);
[p,ci] = betafit(r,0.01)
[p,ci] = betafit(r,0.01)
p =
p =
3.9010 2.6193
3.9010 2.6193
ci =
ci =
2.5244 1.7488
2.5244 1.7488
5.2777 3.4899

```
```

 5.2777 3.4899
    ```
```

 This example generates 100 beta distributed observations. The "true"
 parameters are 4 and 3 respectively. Compare these to the values in p. Note
 that the columns of ci both bracket the true parameters.
 The optional input argument, alpha, controls the width of the confidence
 interval. By default, alpha is 0.05 which corresponds to \(95 \%\) confidence
 intervals.

This example generates 100 beta distributed observations. The "true" parameters are 4 and 3 respectively. Compare these to the values in p. Note that the columns of ci both bracket the true parameters.
betafit computes the maximum likeli hood estimates of the parameters of the beta distribution from the data in the vector, x. With two output parameters, betafit also returns confidence intervals on the parameters, in the form of a 2-by-2 matrix. The first column of the matrix contains the lower and upper confidence bounds for parameter A, and the second column contains the confidence bounds for parameter B.

The optional input argument, alpha, controls the width of the confidence interval. By default, alpha is 0.05 which corresponds to 95% confidence intervals.

betainv

Purpose Inverse of the beta cumulative distribution function.

Syntax

Description betainv (P, A, B) computes the inverse of the beta cdf with parameters A and B for the probabilities in P. The arguments P, A, and B must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters A and B must both be positive and P must lie on the interval [01].

The beta inverse function in terms of the beta cdf is:

$$
x=F^{-1}(p \mid a, b)=\{x: F(x \mid a, b)=p\}
$$

where

$$
p=F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

The result, x, is the solution of the integral equation of the beta cdf with parameters a and b where you supply the desired probability p.

Algorithm Weuse Newton's Method with modifications to constrain steps to the allowable range for x, i.e., [0 1].

Examples

```
p = [0.01 0.5 0.99];
x = betainv(p,10,5)
x =
    0.3726 0.6742 0.8981
```

Purpose Negative beta log-likelihood function.

```
Syntax
```

Description
Example
info =
$0.2856 \quad 0.1528$
$0.1528 \quad 0.1142$

See Also
betafit, fmins, gamlike, mle, weiblike

betapdf

Purpose Beta probability density function (pdf).

Syntax
 $$
Y=\operatorname{betapdf}(X, A, B)
$$

Description
betapdf (X, A, B) computes the beta pdf with parameters A and B at the values in X. The arguments X, A, and B must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters A and B must both be positive and X must lie on the interval [01].

The probability density function for the beta distribution is:

$$
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} I_{(0,1)}(x)
$$

A likelihood function is the pdf viewed as a function of the parameters. M aximum likelihood estimators (MLEs) are the values of the parameters that maximize the likelihood function for a fixed value of x.

The uniform distribution on [0 1] is a degenerate case of the beta where $\mathrm{a}=1$ and $\mathrm{b}=1$.

Examples

```
a = [0.5 1; 2 4]
a =
    0.5000 1.0000
    2.0000 4.0000
y = betapdf(0.5,a,a)
y =
    0.6366 1.0000
    1.5000 2.1875
```

Purpose

Syntax
Description

Random numbers from the beta distribution.

$$
\begin{aligned}
& R=\operatorname{betarnd}(A, B) \\
& R=\operatorname{betarnd}(A, B, m) \\
& R=\operatorname{betarnd}(A, B, m, n)
\end{aligned}
$$

$R=$ betarnd (A, B) generates beta random numbers with parameters A and B. The size of R is the common size of A and B if both are matrices. If either parameter is a scalar, the size of R is the size of the other.
$R=$ betarnd (A, B, m) generates beta random numbers with parameters A and B. m is a 1-by-2 vector that contains the row and column dimensions of r.
$R=$ betarnd (A, B, m, n) generates an m by n matrix of beta random numbers with parameters A and B.

Examples

```
a = [1 1; 2 2];
    b = [1 2; 1 2];
    r = betarnd(a,b)
    r =
```



```
        r = betarnd(10,10,[1 5])
        r =
            0.5974 0.4777 0.5538 0.5465 0.6327
r = betarnd(4,2,2,3)
r =
\begin{tabular}{lll}
0.3943 & 0.6101 & 0.5768 \\
0.5990 & 0.2760 & 0.5474
\end{tabular}
```


betastat

Purpose Mean and variance for the beta distribution.

Syntax $\quad[M, V]=\operatorname{betastat}(A, B)$

Description For the beta distribution:

- The mean is $\frac{a}{a+b}$
- The variance is $\frac{a b}{(a+b+1)(a+b)^{2}}$

Examples If the parameters are equal, the mean is $1 / 2$.

$$
\begin{aligned}
& \text { a = 1:6; } \\
& \text { [m,v] = betastat(a,a) } \\
& \mathrm{m}= \\
& \begin{array}{llllll}
0.5000 & 0.5000 & 0.5000 & 0.5000 & 0.5000 & 0.5000
\end{array} \\
& \text { v = } \\
& \begin{array}{llllll}
0.0833 & 0.0500 & 0.0357 & 0.0278 & 0.0227 & 0.0192
\end{array}
\end{aligned}
$$

Purpose Binomial cumulative distribution function (cdf).

Syntax $\quad Y=\operatorname{binocdf}(X, N, P)$
Description binocdf (X, N, P) computes the binomial cdf with parameters N and P at the values in X. The arguments X, N, and P must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameter N must be a positive integer and P must lie on the interval [01].
The binomial cdf is:

$$
y=F(x \mid n, p)=\sum_{i=0}^{x}\binom{n}{i} p^{i} q^{(1-i)} I_{(0,1, \ldots, n)}(i)
$$

The result, y , is the probability of observing up to x successes in n independent trials of where the probability of success in any given trial is p.

Examples

If a baseball team plays 162 games in a season and has a 50-50 chance of winning any game, then the probability of that team winning more than 100 games in a season is:

```
1 - binocdf(100,162,0.5)
```

The result is 0.001 (i.e., $1-0.999$). If a team wins 100 or more games in a season, this result suggests that it is likely that the team's true probability of winning any game is greater than 0.5 .

binofit

Purpose Parameter estimates and confidence intervals for binomial data.

| Syntax | phat $=\operatorname{binofit}(x, n)$ |
| :--- | :--- |
| | $[$ phat, pci $]=\operatorname{binofit}(x, n)$ |
| | $[$ phat, pci $]=\operatorname{binofit}(x, n$, alpha $)$ |

Description binofit (x, n) returns the estimate of the probability of success for the binomial distribution given the data in the vector, x.
[phat,pci] = binofit(x, n) gives maximum likelihood estimate, phat, and 95% confidence intervals, pci.
[phat,pci] = binofit(x,n,alpha) gives 100(1-alpha) percent confidence intervals. For example, alpha $=0.01$ yields 99% confidence intervals.

Example

Reference J ohnson, N. L., S. K otz, and A.W. Kemp, "U nivariate Discrete Distributions,
Second Edition," Wiley 1992. pp. 124-130.

See Also
 mle

Purpose
Inverse of the binomial cumulative distribution function (cdf).

Syntax

Description

Examples

X = binoinv(Y,N,P)
binoinv ($\mathrm{Y}, \mathrm{N}, \mathrm{P}$) returns the smallest integer X such that the binomial cdf evaluated at X is equal to or exceeds Y. Y ou can think of Y as the probability of observing X successes in N independent trials where P is the probability of success in each trial.

The parameter n must be a positive integer and both P and Y must lie on the interval [01]. Each x is a positive integer less than or equal to N.

If a baseball team has a 50-50 chance of winning any game, what is a reasonable range of games this team might win over a season of 162 games? We assume that a surprising result is one that occurs by chance once in a decade.

```
binoinv([0.05 0.95],162,0.5)
    ans =
        71 91
```

This result means that in 90% of baseball seasons, a .500 team should win between 71 and 91 games.

binopdf

Purpose
Syntax
Description

Examples

Binomial probability density function (pdf).

$$
Y=\operatorname{binopdf}(X, N, P)
$$

binopdf(X, N, P) computes the binomial pdf with parameters N and P at the values in X. The arguments X, N and P must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

N must be a positive integer and P must lie on the interval [01].
The binomial pdf is

$$
y=f(x \mid n, p)=\binom{n}{x} p^{x} q^{(1-x)} I_{(0,1, \ldots, n)}(x)
$$

The result, y , is the probability of observing x successes in n independent trials of where the probability of success in any given trial is p.

A Quality Assurance inspector tests 200 circuit boards a day. If 2\% of the boards have defects, what is the probability that the inspector will find no defective boards on any given day?

```
binopdf(0,200,0.02)
ans =
    0.0176
```

What is the most likely number of defective boards the inspector will find?

```
y = binopdf([0:200],200,0.02);
[x,i] = max(y);
i
i =
```

Purpose

Syntax
 Description

Algorithm

Examples

Random numbers from the binomial distribution.

$$
\begin{aligned}
& R=\operatorname{binornd}(N, P) \\
& R=\operatorname{binornd}(N, P, m m) \\
& R=\operatorname{binornd}(N, P, m m, n n)
\end{aligned}
$$

$R=$ binornd (N, P) generates binomial random numbers with parameters N and P. The size of R is the common size of N and P if both are matrices. If either parameter is a scalar, the size of R is the size of the other.
$R=$ binornd $(N, P, m m)$ generates binomial random numbers with parameters N and $P . m m$ is a 1-by- 2 vector that contains the row and column dimensions of R.
$R=$ binornd($N, p, m m, n n$) generates binomial random numbers with parameters N and P . The scalars mm and nn are the row and column dimensions of R.

The binornd function uses the direct method using the definition of the binomial distribution as a sum of Bernoulli random variables.

```
n = 10:10:60;
r1 = binornd(n,1./n)
r1 =
    2 1 1 0
r2 = binornd(n,1./n,[1 6])
r2 =
    0
r3 = binornd(n,1./n,1,6)
r3 =
\begin{tabular}{llllll}
0 & 1 & 1 & 1 & 0 & 3
\end{tabular}
```

Purpose Mean and variance for the binomial distribution.

Syntax $\quad[M, V]=$ binostat (N, P)

Description F or the binomial distribution:

- The mean is np.
- The variance is npq.

Examples $\quad \begin{aligned} \mathrm{n} & =\operatorname{logspace}(1,5,5) \\ \mathrm{n} & =\end{aligned}$
10
100
1000
10000
100000
[m,v] = binostat(n,1./n)
$\mathrm{m}=$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$
v =
$\begin{array}{lllll}0.9000 & 0.9900 & 0.9990 & 0.9999 & 1.0000\end{array}$
[m,v] = binostat(n,1/2)
$\mathrm{m}=$
5
50
500
5000
50000
v =
$1.0 \mathrm{e}+04$ *
0.0003
0.0025
0.0250
0.2500
2.5000

Purpose
Bootstrap statistics through resampling of data.

```
Syntax bootstat = bootstrp(nboot,'bootfun',d1,...)
[bootstat,bootsam] = bootstrp(...)
```

bootstrp(nboot, 'bootfun', $\mathrm{d} 1, \ldots$) draws nboot bootstrap data samples and analyzes them using the function bootfun. nboot must be a positive integer. bootstrp passes the data d1, d2, etc., to bootfun.
[bootstat, bootsam] = bootstrap(...) returns the bootstrap statistics in bootstat. Each row of bootstat contains the results of applying 'bootfun' to one bootstrap sample. If 'bootfun' returns a matrix, then this output is converted to a long vector for storage in bootstat. bootsam is a matrix of indices into the rows of the data matrix.

Example

Correlate the LSAT scores and and law-school GPA for 15 students. These 15 data points are resampled to create 1000 different datasets, and the correlation between the two variables is computed for each dataset.

```
load lawdata
[bootstat,bootsam] = bootstrp(1000,'corrcoef',lsat,gpa);
bootstat(1:5,:)
ans =
\begin{tabular}{llll}
1.0000 & 0.3021 & 0.3021 & 1.0000 \\
1.0000 & 0.6869 & 0.6869 & 1.0000 \\
1.0000 & 0.8346 & 0.8346 & 1.0000 \\
1.0000 & 0.8711 & 0.8711 & 1.0000 \\
1.0000 & 0.8043 & 0.8043 & 1.0000
\end{tabular}
```


bootstrp

bootsam(:,1:5)
ans $=$

| 4 | 7 | 5 | 12 | 8 |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 11 | 10 | 8 | 4 |
| 11 | 9 | 12 | 4 | 2 |
| 11 | 14 | 15 | 5 | 15 |
| 15 | 13 | 6 | 6 | 2 |
| 6 | 8 | 4 | 3 | 8 |
| 8 | 2 | 15 | 8 | 6 |
| 13 | 10 | 11 | 14 | 5 |
| 1 | 7 | 12 | 14 | 14 |
| 1 | 11 | 10 | 1 | 8 |
| 8 | 14 | 2 | 14 | 7 |
| 11 | 12 | 10 | 8 | 15 |
| 1 | 4 | 14 | 8 | 1 |
| 6 | 1 | 5 | 5 | 12 |
| 2 | 12 | 7 | 15 | 12 |

hist(bootstat(:,2))

The histogram shows the variation of the correlation coefficient across all the bootstrap samples. The sample minimum is positive indicating that the relationship between LSAT and GPA is not accidental.

Purpose Box plots of a data sample.

Syntax | | $\operatorname{boxplot}(X)$ |
| ---: | :--- |
| | $\operatorname{boxplot}(X$, notch $)$ |
| | $\operatorname{boxplot}(X$, notch, 'sym') |
| | $\operatorname{boxplot}(X$, notch, 'sym', vert $)$ |
| | boxplot $(X$, notch, 'sym', vert, whis $)$ |

Description

boxplot (X) produces a box and whisker plot for each column of X. The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Outliers are data with values beyond the ends of the whiskers. If there is no data outside the whisker, there is a dot at the bottom whisker. The dot color is the same as the whisker color.
boxplot (X, notch) with notch $=1$ produces a notched-box plot. Notches graph a robust estimate of the uncertainty about the means for box to box comparison. The default, notch $=0$ produces a rectangular box plot.
boxplot(X, notch, 'sym') where 'sym' is a plotting symbol allows control of the symbol for outliers if any (default = ' + ').
boxplot (X, notch, 'sym', vert) with vert =0 makes the boxes horizontal (default: vert $=1$, for vertical)
boxplot(X, notch, 'sym', vert, whis) enables you to specify the length of the "whiskers". whis defines the length of the whiskers as a function of the inter-quartile range (default $=1.5 * I Q R$.) If whis $=0$, then boxplot displays all data values outside the box using the plotting symbol, 'sym'.

boxplot

Examples

```
x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);
x = [x1 x2];
boxplot(x,1)
```


The difference between the means of the two columns of x is 1 . We can detect this difference graphically since the notches do not overlap.

Purpose Process capability indices.

Syntax
p = capable(data, lower, upper)
[p,Cp,Cpk] = capable(data,lower, upper)

Description

Example

capable (data, lower, upper) computes the probability that a sample, data, from some process falls outside the bounds specified in lower and upper.

The assumptions are that the measured values in the vector, data, are normally distributed with constant mean and variance and the the measurements are statistically independent.
[$p, C p, C p k$] = capable(data,lower, upper) alsoreturns the capability indices Cp and Cpk.

Cp is the ratio of the range of the specifications to six times the estimate of the process standard deviation

$$
C_{p}=\frac{U S L-L S L}{6 \sigma}
$$

F or a process that has its average value on target, a Cp of one translates to a little more than one defect per thousand. Recently many industries have set a quality goal of one part per million. This would correspond to a $\mathrm{Cp}=1.6$. The higher the value of Cp the more capable the process.

Cpk is the ratio of difference between the process mean and the closer specification limit to three times the estimate of the process standard deviation

$$
\mathrm{C}_{\mathrm{pk}}=\min \left(\frac{\mathrm{USL}-\mu}{3 \sigma}, \frac{\mu-\mathrm{LSL}}{3 \sigma}\right)
$$

where the process mean is μ. F or processes that do not maintain their average on target, Cpk is a more descriptive index of process capability.

Imagine a machined part with specifications requiring a dimension to be within three thousandths of an inch of nominal. Suppose that the machining process cuts too thick by one thousandth of an inch on average and al so has a
standard deviation of one thousandth of an inch. What are the capability indices of this process?

```
data = normrnd(1,1,30,1);
[p,Cp,Cpk] = capable(data,[-3 3]);
indices = [p Cp Cpk]
indices =
    0.0172 1.1144 0.7053
```

We expect 17 parts out of a thousand to be out-of-specification. Cpk is less than Cp because the process is not centered.

Reference

See Also
capaplot,histfit

capaplot

Purpose Process capability plot.

Syntax
p = capaplot(data,specs)
[p,h] = capaplot(data,specs)

Description

Example

capaplot (data, specs) fits the observations in the vector data assuming a normal distribution with unknown mean and variance and plots the distribution of a new observation (T distribution.) The part of the distribution between the lower and upper bounds contained in the two element vector, specs, is shaded in the plot.
[$\mathrm{p}, \mathrm{h}]=$ capaplot (data, specs) returns the probability of the new observation being within specification in p and handles to the plot elements in h.

Imagine a machined part with specifications requiring a dimension to be within 3 thousandths of an inch of nominal. Suppose that the machining process cuts too thick by one thousandth of an inch on average and al so has a standard deviation of one thousandth of an inch.

```
data = normrnd(1,1,30,1);
p = capaplot(data,[-3 3])
p =
    0.9784
```

The probability of a new observation being within specs is 97.84%.

See Also
capable, histfit

Purpose Read casenames from a file.

```
Syntax names = caseread(filename)
names = caseread
Description names = caseread(filename) reads the contents of filename and returns a
string matrix of names. filename is the name of a file in the current directory,
or the complete pathname of any file el sewhere. caseread treats each line as a
separate case.
names = caseread displays the File Open dialog box for interactive selection
of the input file.
```


Example

```
Use the file months.dat created using the function casewrite on the next page.
type months.dat
January
February
March
April
May
names = caseread('months.dat')
names \(=\)
January
February
March
April
May
```


See Also

tblread, gname, casewrite

Purpose
 Write casenames from a string matrix to a file.

```
Syntax casewrite(strmat,filename)
casewrite(strmat)
casewrite(strmat,'months.dat')
type months.dat
```

Description

Example

January
February
March
April
May

See Also

Purpose Computes a chosen cumulative distribution function (cdf).

Syntax

Description

Examples

```
p = cdf('Normal',-2:2,0,1)
p =
            0.0228 0.1587 0.5000 0.8413 0.9772
p = cdf('Poisson',0:5,1:6)
p =
\begin{tabular}{llllll}
0.3679 & 0.4060 & 0.4232 & 0.4335 & 0.4405 & 0.4457
\end{tabular}
```

See Also icdf, mle, pdf, random

Purpose

Syntax

Description

Examples

Chi-square (χ^{2}) cumulative distribution function (cdf).

```
P = chi2cdf(X,V)
```

chi2cdf(X, V) computes the χ^{2} cdf with parameter v at the values in X. The arguments x and v must be the same size except that a scalar argument functions as a constant matrix of the same size as the other argument.

The degrees of freedom, v , must be a positive integer.
The χ^{2} cdf is:

$$
p=F(x \mid v)=\int_{0}^{x} \frac{t(v-2) / 2 e^{-t / 2}}{2^{\frac{v}{2}} \Gamma(v / 2)} d t
$$

The result, p, is the probability that a single observation from the χ^{2} distribution with degrees of freedom, v, will fall in the interval [$0 x$].

The χ^{2} density function with n degrees of freedom is the same as the gamma density function with parameters $\mathrm{n} / 2$ and 2 .

```
probability = chi2cdf(5,1:5)
probability =
    0.9747 0.9179 0.8282 0.7127 0.5841
probability = chi2cdf(1:5,1:5)
probability =
    0.6827 0.6321 0.6084 0.5940 0.5841
```


chi2inv

Purpose

Syntax

Description

Examples

I nverse of the chi-square (χ^{2}) cumulative distribution function (cdf).
$X=\operatorname{chi2inv}(P, V)$
chi2inv (P, V) computes the inverse of the χ^{2} cdf with parameter V for the probabilities in P. The arguments P and V must be the same size except that a scalar argument functions as a constant matrix of the size of the other argument.

The degrees of freedom, V , must be a positive integer and P must lie in the interval [01].
We define the χ^{2} inverse function in terms of the χ^{2} cdf.

$$
\begin{aligned}
& x=F^{-1}(p \mid v)=\{x: F(x \mid v)=p\} \\
& \text { where } p=F(x \mid v)=\int_{0}^{x} \frac{t^{(v-2) / 2} e^{-t / 2}}{2^{\frac{v}{2}} \Gamma(v / 2)} d t
\end{aligned}
$$

The result, x, is the solution of the integral equation of the χ^{2} cdf with parameter v where you supply the desired probability p.

Find a value that exceeds 95% of the samples from a χ^{2} distribution with 10 degrees of freedom.

```
x = chi2inv(0.95,10)
x =
```

18.3070

You would observe values greater than 18.3 only 5% of the time by chance.

Purpose

Syntax

Description

Examples

Chi-square (χ^{2}) probability density function (pdf).
$Y=\operatorname{chi} 2 p d f(X, V)$
chi2pdf(X, V) computes the χ^{2} pdf with parameter V at the values in X. The arguments x and v must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument.

The degrees of freedom, v, must be a positive integer.
The chi-square pdf is:

$$
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{\frac{v}{2}} \Gamma(v / 2)}
$$

The χ^{2} density function with n degrees of freedom is the same as the gamma density function with parameters $\mathrm{n} / 2$ and 2 .
If x is standard normal, then x^{2} is distributed χ^{2} with one degree of freedom. If $x_{1}, x_{2}, \ldots, x_{n}$ are n independent standard normal observations, then the sum of the squares of the x 's is distributed χ^{2} with n degrees of freedom.

$$
\begin{aligned}
& n u=1: 6 ; \\
& x=n u ; \\
& y=\operatorname{chi2pdf}(x, n u) \\
& y=
\end{aligned}
$$

$$
\begin{array}{llllll}
0.2420 & 0.1839 & 0.1542 & 0.1353 & 0.1220 & 0.1120
\end{array}
$$

The mean of the χ^{2} distribution is the value of the parameter, nu. The above example shows that the probability density of the mean falls as nu increases.

Purpose
Random numbers from the chi-square $\left(\chi^{2}\right)$ distribution.
Syntax
$R=c h i 2 r n d(V)$
R = chi2rnd(V,m)
R = chi2rnd(V,m,n)

Description $\quad R=\operatorname{chi} 2 r n d(V)$ generates χ^{2} random numbers with V degrees of freedom. The size of R is the size of V.
$R=c h i 2 r n d(V, m)$ generates χ^{2} random numbers with V degrees of freedom. m is a 1-by-2 vector that contains the row and column dimensions of R .
$R=\operatorname{chi} 2 r n d(V, m, n)$ generates χ^{2} random numbers with V degrees of freedom. The scalars m and n are the row and column dimensions of R.

Examples

N ote that the first and third commands are the same but are different from the second command.

```
r = chi2rnd(1:6)
r =
    0.0037 3.0377 7.8142 0.9021 3.2019 9.0729
r = chi2rnd(6,[1 6])
r =
    6.5249 2.6226 12.2497 3.0388 6.3133 5.0388
r = chi2rnd(1:6,1,6)
r =
\begin{tabular}{llllll}
0.7638 & 6.0955 & 0.8273 & 3.2506 & 1.5469 & 10.9197
\end{tabular}
```

Purpose
Mean and variance for the chi-square $\left(\chi^{2}\right)$ distribution.
Syntax $\quad[M, V]=$ chi2stat (NU)

Description For the χ^{2} distribution:

- The mean is n
- The variance is 2 n .

Example

v =

| 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
| 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
| 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 |
| 14 | 28 | 42 | 56 | 70 | 84 | 98 | 112 | 126 | 140 |
| 16 | 32 | 48 | 64 | 80 | 96 | 112 | 128 | 144 | 160 |
| 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 | 162 | 180 |
| 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 |

classify

| Purpose | Linear discriminant analysis. |
| :---: | :---: |
| Syntax | class = classify(sample, training, group) |
| Description | class = classify(sample,training, group) assigns each row of the data in sample into one of the groups that the training set, training, is already divided into. sample and training must have the same number of columns. |
| | The vector group contains integers, from one to the number of groups, that identify which group each row of the training set belongs. group and training must have the same number of rows. |
| | The function returns class, a vector with the same number of rows as sample. E ach element of class identifies the group to which the corresponding element of sample has been assigned. The classify function determines into which group each row in sample belongs by computing the Mahal anobis distance of each row in sample to each row in training. |
| Example | load discrim |
| | sample = ratings(idx,:); |
| | training = ratings(1:200,:); |
| | $\mathrm{g}=\operatorname{group}(1: 200) ;$ |
| | class = classify(sample,training,g); |
| | first5 $=$ class(1:5) |
| | first5 = |
| | 2 |
| | 2 |
| | 2 |
| | 2 |
| | 2 |
| See Also | mahal |

Purpose Construct clusters from linkage output.

```
Syntax
T = cluster(Z,cutoff)
T = cluster(Z,cutoff,depth)
```

Description
cluster(Z, cutoff) constructs clusters from hierarchical cluster tree, Z, generated by the linkage function. Z is a matrix of size $\mathrm{m}-1$ by 3 , where m is the number of observations in the original data.
cutoff is a threshold value that determines how the cluster function creates clusters. The value of cutoff determines how cluster interprets it.

| Value | Meaning |
| :--- | :--- |
| $0<$ cutoff < 1 | cutoff is interpreted as the threshold for the
 inconsistency coefficient. The inconsistency
 coefficient quantifies the degree of difference between
 objects in the hierarchical cluster tree. If
 inconsistency coefficient of a link is greater than the
 threshold, the cluster function uses the link as a
 boundary for a cluster grouping. For more information
 about the inconsistency coefficient, see the
 inconsistent function. |
| cutoff >= 1 | cutoff is interpreted as the maximum number of
 clusters to keep in the hierarchical tree. |

cluster (Z, cutoff, depth) constructs clusters from cluster tree Z. The depth argument specifies the number of levels in the hierarchical cluster tree to include in the inconsistency coefficient computation. (The inconsistency coefficient compares a link between two objects in the cluster tree with neighboring links up to a specified depth. See the inconsistent function for more information.) When the depth argument is specified, cutoff is always interpreted as the inconsistency coefficient threshold.

The output, T , is a vector of size m that identifies, by number, the cluster in which each object was grouped. To find out which object from the original dataset are contained in cluster i , use find ($\mathrm{T}==\mathrm{i}$).

cluster

ExampleThe example uses the pdist function to calculate the distance between itemsin a matrix of random numbers and then uses the linkage function to computethe hierarchical cluster tree based on the matrix. The output of the linkagefunction is passed to the cluster function. The cutoff value 3 indicates thatyou want to group the items into three clusters. The example uses the findfunction to list all the items grouped into cluster 2.

```
rand('seed', 0);
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y);
T = cluster(Z,3);
find(T == 3)
ans =
```

11
12
13
14
15
16
17
18
19
20
See Also clusterdata, cophenet, dendrogram, inconsistent, linkage, pdist, squareform

Purpose Construct clusters from data.

$$
\text { Syntax } \quad T=\text { clusterdata }(X, \text { cutoff })
$$

Description $\quad T=$ clusterdata (X , cutoff) constructs clusters from the data matrix $\mathrm{X} . \mathrm{X}$ is a matrix of size m by n, interpreted as m observations of n variables.
cutoff is a threshold value that determines how the cluster function creates clusters. The value of cutoff determines how clusterdata interprets it.

| Value | Meaning |
| :--- | :--- |
| $0<$ cutoff < 1 | cutoff is interpreted as the threshold for the
 inconsistency coefficient. The inconsistency
 coefficient quantifies the degree of difference between
 objects in the hierarchical cluster tree. If
 inconsistency coefficient of a link is greater than the
 threshold, the cluster function uses the link as a
 boundary for a cluster grouping. For more information
 about the inconsistency coefficient, see the
 inconsistent function. |
| cutoff >=1 | cutoff is interpreted as the maximum number of
 clusters to keep in the hierarchical tree. |

The output, T, is a vector of size m that identifies, by number, the cluster in which each object was grouped.

T = clusterdata(X, cutoff) is the same as
Y = pdist(X,'euclid');
Z = linkage(Y,'single');
$\mathrm{T}=$ cluster(Z, cutoff);
F ollow this sequence to use nondefault parameters for pdist and linkage.

Example

The example first creates a sample dataset of random numbers. The example then uses the clusterdata function to compute the distances between items in the dataset and create a hierarchical cluster tree from the dataset. Finally, the

clusterdata

clusterdata function groups the items in the dataset into three clusters. The example uses the find function to list all the items in cluster 2.

```
rand('seed', 12);
X = [rand(10,3); rand(10,3)+1.2; rand(10,3)+2.5;
T = clusterdata(X,3);
find(T == 2)
ans =
```

21
22
23
24
25
26
27
28
29
30

See Also cluster, cophenet, dendrogram, inconsistent, linkage, pdist, squareform

Purpose Enumeration of all combinations of n objects k at a time.

Syntax
 C = combnk(v,k)

Description $\quad C=\operatorname{combnk}(v, k)$ returns all combinations of the n elements in v taken k at a time.
$\mathrm{C}=\operatorname{combnk}(\mathrm{v}, \mathrm{k})$ produces a matrix, with k columns. E ach row of c has k of the elements in the vector v. C has $n!/ k!(n-k)$! rows.

It is not feasible to use this function if v has more than about 10 elements.

Example

Combinations of characters from a string.

```
C = combnk('tendril',4);
last5 = C(31:35,:)
last5 =
tedr
tenl
teni
tenr
tend
Combinations of elements from a numeric vector.
    c = combnk(1:4,2)
    C =
```

 \(3 \quad 4\)
 24
23
14
13
12

Purpose Cophenetic correlation coefficient.

Syntax

Description

Example

```
rand('seed',12);
X = [rand(10,3);rand(10,3)+1;rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'centroid');
c = cophenet(Z,Y)
c =
        0.6985
```

See Also cluster, dendrogram, inconsistent, linkage, pdist, squareform

Purpose
D-optimal design of experiments - coordinate exchange al gorithm.

Example

See Also

rowexch, daugment, dcovary, hadamard, fullfact, ff2n

Purpose Correlation coefficients.

Syntax

Description $\quad R=\operatorname{corrcoef}(X)$ returns a matrix of correlation coefficients calculated from an input matrix whose rows are observations and whose col umns are variables. The element (i, j) of the matrix R is related to the corresponding element of the covariance matrix $\mathrm{C}=\operatorname{cov}(\mathrm{X})$ by

$$
r R(i, j)=\frac{C(i, j))}{\sqrt{C(i, i) C(j, j)}}
$$

See Also cov, mean, std, var
corrcoef is a function in MATLAB.

Purpose Covariance matrix.

Syntax
 $C=\operatorname{cov}(X)$
 $C=\operatorname{cov}(x, y)$

Description

Algorithm

The algorithm for cov is

$$
\begin{aligned}
& {[n, p]=\operatorname{size}(X) ;} \\
& X=X-\operatorname{ones}(n, 1) * \text { mean }(X) ; \\
& Y=X ' * X /(n-1) ;
\end{aligned}
$$

See Also

 sqrt(diag(cov(X))). result as cov([x y]).corrcoef, mean, std, var
cov computes the covariance matrix. For a single vector, cov (x) returns a scalar containing the variance. F or matrices, whereeach row is an observation, and each column a variable, $\operatorname{cov}(\mathrm{X})$ is the covariance matrix.

The variance function, $\operatorname{var}(X)$ is the same as $\operatorname{diag}(\operatorname{cov}(X))$.
The standard deviation function, $\operatorname{std}(X)$ is equivalent to
$\operatorname{cov}(x, y)$, where x and y are column vectors of equal length, gives the same
xcov, xcorr in the Signal Processing Tool box
cov is a function in MATLAB.
Purpose Cross-tabulation of two vectors.
Syntax

table $=$ crosstab(col1,col2)

[table,chi2,p] = crosstab(col1,col2)
Description table $=$ crosstab (col1, col2) takes two vectors of positive integers and returns a matrix, table, of cross-tabulations. The ijth element of table contains the count of all instances where col1 $=\mathrm{i}$ and $\operatorname{col} 2=\mathrm{j}$.
[table,chi2, p] = crosstab(col1, col2) alsoreturns the chisquare statistic, chi2, for testing the independence of the rows and columns table. The scalar, p, is the significance level of the test. Values of p near zero cast doubt on the assumption of independence of the rows and columns of table.

Example

We generate 2 columns of 50 discrete uniform random numbers. The first column has numbers from oneto three. The second has only ones and twos. The two columns are independent so we would be surprised if p were near zero.

```
r1 = unidrnd(3,50,1);r2 = unidrnd(2,50,1);
[table,chi2,p] = crosstab(r1,r2)
table =
            10 5
            8
            6 13
chi2 =
            4.1723
p =
0.1242
```

The result, 0.1242 , is not a surprise. A very small value of p would make us suspect the "randomness" of the random number generator.
See Also tabulate

Purpose
D-optimal augmentation of an experimental design.

Syntax
 Description

Example

See Also

settings = daugment(startdes, nruns)
[settings, X] = daugment(startdes, nruns,'model')
settings = daugment(startdes, nruns) augments an initial experimental design, startdes, with nruns new tests.
[settings, X] = daugment(startdes, nruns, 'model') also supplies the design matrix, x . The input, 'model ', controls the order of the regression model. By default, daugment assumes a linear additive model. Alternatively, 'model ' can be any of these:

- 'interaction' - includes constant, linear, and cross product terms.
- 'quadratic' - interactions plus squared terms.
- 'purequadratic' - includes constant, linear and squared terms.
daugment uses the coordinate exchange algorithm.
We add 5 runs to a 2^{2} factorial design to allow us to fit a quadratic model.

```
startdes = [-1 -1; 1 -1; -1 1; 1 1];
settings = daugment(startdes,5,'quadratic')
settings =
    -1 -1
        -1
        -1 1
        1
        1 0
        -1 0
        0 1
        0
        0 -1
```

The result is a 3^{2} factorial design.
cordexch, dcovary, rowexch
Purpose D-optimal design with specified fixed covariates.

```
Syntax settings = dcovary(factors,covariates)
[settings,X] = dcovary(factors,covariates,'model')
```

Description settings = dcovary(factors,covariates, 'model') creates a D-optimal
design subject to the constraint of fixed covariates for each run. factors is
the number of experimental variables you want to control.
[settings, X] = dcovary(factors, covariates,'model') also creates the
associated design matrix, x . Theinput, 'model', controls the order of the
regression model. By default, dcovary assumes a linear additive model.
Alternatively, 'model' can be any of these:

- 'interaction ' - includes constant, linear, and cross product terms.
- 'quadratic' - interactions plus squared terms.
- 'purequadratic ' - includes constant, linear and squared terms.

Example

See Also
daugment, cordexch

dendrogram

Purpose
Plot dendrogram graphs.

Syntax \quad| $H=\operatorname{dendragram}(Z)$ | |
| :--- | :--- |
| | $H=\operatorname{dendragram}(Z, p)$ |
| | $[H, T]=\operatorname{dendragram}(\ldots)$ |

Description

H = dendrogram(Z) generates a dendrogram plot of the hierarchical, binary cluster tree, Z . Z is an $\mathrm{m}-1$ by 3 matrix, generated by the linkage function, where m is the number of objects in the original dataset.

A dendrogram consists of many upside-down, U-shaped lines connecting objects in a hierarchical tree. Except for the Ward linkage (see linkage), the height of each U represents the distance between the two objects being connected. The output, H , is a vector of line handles.
$H=$ dendrogram (Z, p) generates a dendrogram with only the top p nodes. By default, dendrogram uses 30 as the value of p. When there are more than 30 initial nodes, a dendrogram may look crowded. To di splay every node, set p = 0 .
$[H, T]=$ dendrogram (...) generates a dendrogram, returning T, a vector of size m that contains the cluster number for each object in the original dataset. T provides access to the nodes of a cluster hierarchy that are not displayed in the dendrogram because they fall below the cutoff value p. F or example, to find out which objects are contained in leaf node k of the dendrogram, use find ($\mathrm{T}==\mathrm{k}$). Leaf nodes are the nodes at the bottom of the dendrogram that have no other nodes below them.

When there are fewer than p objects in the original data, all objects are displayed in the dendrogram. In this case, T is the identical map, i.e., $\mathrm{T}=(1: \mathrm{m})$ ', where each node contains only itself.

Example

rand('seed', 12);
$X=$ rand $(100,2)$;
$Y=$ pdist(X,'citiblock');
Z= linkage(Y,'average');
[$\mathrm{H}, \mathrm{T}]=$ dendrogram(Z);

find (T==20)
ans $=$

20
49
62
65
73
96

dendrogram

This output indicates that leaf node 20 in the dendrogram contains the original data points $20,49,62,65,73$, and 96 .

See Also cluster, clusterdata, cophenet, inconsistent, linkage, pdist, squareform
Purpose Interactive graph of cdf (or pdf) for many probability distributions.
Syntax disttool
Description

The disttool command sets up a graphic user interface for exploring the
See Also randtool effects of changing parameters on the plot of a cdf or pdf. Clicking and dragging a vertical line on the plot allows you to evaluate the function over its entire domain interactively.
Evaluate the plotted function by typing a value in the x-axis edit box or dragging the vertical reference line on the plot. F or cdfs, you can evaluate the inverse function by typing a value in the y-axis edit box or dragging the horizontal reference line on the plot. The shape of the pointer changes from an arrow to a crosshair when you areover the vertical or horizontal lineto indicate that the reference line is draggable.
To change the distribution function choose from the pop-up menu of functions at the top left of the figure. To change from cdfs to pdfs, choose from the pop-up menu at the top right of the figure.
To change the parameter settings move the sliders or type a value in the edit box under the name of the parameter. To change the limits of a parameter, type a value in the edit box at the top or bottom of the parameter slider.
When you are done, press the Close button.

Purpose Matrix of 0-1 "dummy" variables.

Syntax
 D = dummyvar (group)

Description $\quad D=$ dummyvar (group) generates a matrix, D, of $0-1$ columns. D has one column for each unique value in each column of the matrix group. Each column of group contains positive integers that indicate the group membership of an individual row.

Example

Suppose we are studying the effects of two machines and three operators on a process. The first column of group would have the values one or two depending on which machine was used. The second column of group would havethe values one, two, or three depending on which operator ran the machine.

```
group = [1 1;1 2;1 3;2 1;2 2;2 3];
D = dummyvar(group)
D =
\begin{tabular}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{tabular}
```


See Also
 pinv, regress

Purpose Plot error bars along a curve.

Syntax \quad| $\operatorname{errorbar}(X, Y, L, U$, symbol $)$ | |
| :--- | :--- |
| | $\operatorname{errorbar}(X, Y, L)$ |
| | $\operatorname{errorbar}(Y, L)$ |

Description errorbar $(X, Y, L, U$, symbol) plots X versus Y with error bars specified by L and U. X, Y, L, and U must be the same length. If X, Y, L, and U are matrices, then each column produces a separate line. The error bars are each drawn a distance of $U(i)$ above and $L(i)$ below the points in (X, Y). symbol is a string that controls the line type, plotting symbol, and color of the error bars.
errorbar ($\mathrm{X}, \mathrm{Y}, \mathrm{L}$) plots X versus Y with symmetric error bars about Y .
errorbar (Y, L) plots Y with error bars [$\mathrm{Y}-\mathrm{L} \mathrm{Y}+\mathrm{L}$].

Example

```
lambda = (0.1:0.2:0.5);
r = poissrnd(lambda(ones(50,1),:));
[p,pci] = poissfit(r,0.001);
L = p - pci(1,:)
U = pci(2,:) - p
errorbar(1:3,p,L,U,'+')
L =
        0.1200 0.1600 0.2600
U =
        0.2000 0.2200 0.3400
```


See Also errorbar is a function in MATLAB.

| Purpose | Exponentially Weighted Moving Average (EWMA) chart for Statistical Process Control (SPC). |
| :---: | :---: |
| Syntax | ```ewmaplot(data) ewmaplot(data,lambda) ewmaplot(data,lambda,alpha) ewmaplot(data,lambda,alpha,specs) h = ewmaplot(...)``` |
| Description | ewmaplot (data) produces an EWMA chart of the grouped responses in data. The rows of data contain replicate observations taken at a given time. The rows should be in time order.
 ewmaplot (data, lambda) produces an EWMA chart of thegrouped responses in data, and specifes how much the current prediction is influenced by past observations. Higher values of lambda give more weight to past observations. By default, lambda $=0.4$; lambda must be between 0 and 1 .
 ewmaplot (data, lambda, alpha) produces an EWMA chart of the grouped responses in data, and specifies the significance level of the upper and lower plotted confidence limits. alpha is 0.01 by default. This means that roughly 99% of the plotted points should fall between the control limits.
 ewmaplot(data, lambda, alpha, specs) produces an EWMA chart of the grouped responses in data, and specifies a two element vector, specs, for the lower and upper specification limits of the response. Note
 $h=$ ewmaplot (...) returns a vector of handles to the plotted lines. |
| Example | Consider a process with a slowly drifting mean over time. An EWMA chart is preferableto an x-bar chart for monitoring this kind of process. This simulation demonstrates an EWMA chart for a slow linear drift. ```t = (1:30)'; r = normrnd(10+0.02*t(:,ones(4,1)),0.5); ewmaplot(r,0.4,0.01,[9.3 10.7])``` |

Reference
See Alsoxbarplot, schart

Purpose
 Exponential cumulative distribution function (cdf).

Syntax
 $P=\operatorname{expcdf}(X, M U)$

Description expcdf (X,MU) computes the exponential cdf with parameter settings MU at the values in X. The arguments X and MU must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument.

The parameter MU must be positive.
The exponential cdf is:

$$
\mathrm{p}=\mathrm{F}(\mathrm{x} \mid \mu)=\int_{0}^{\mathrm{x}} \frac{1}{\mu} \mathrm{e}^{-\frac{\mathrm{t}}{\mu}} d t=1-\mathrm{e}^{-\frac{\mathrm{x}}{\mu}}
$$

The result, p , is the probability that a single observation from an exponential distribution will fall in the interval [0 x].

Examples

The median of the exponential distribution is $\mu * \log (2)$. Demonstrate this fact.

```
mu = 10:10:60;
p = expcdf(log(2)*mu,mu)
p =
```

0.5000
0.5000
0.5000
0.5000
0.5000
0.5000

What is the probability that an exponential random variable will be less than or equal to the mean, μ ?

```
mu = 1:6;
x = mu;
p = expcdf(x,mu)
p =
```

$$
\begin{array}{llllll}
0.6321 & 0.6321 & 0.6321 & 0.6321 & 0.6321 & 0.6321
\end{array}
$$

Purpose
 Parameter estimates and confidence intervals for exponential data.

Syntax
Description

See Also

Example
Description

```
muhat = expfit(x)
[muhat,muci] = expfit(x)
[muhat,muci] = expfit(x,alpha)
```

muhat $=\operatorname{expfit}(x)$ returns the estimate of the parameter, μ, of the exponential distribution given the data, x.
[muhat,muci] = expfit(x) also returns the 95\% confidence interval in muci.
[muhat,muci] = expfit(x,alpha) gives 100(1-alpha) percent confidence intervals. For example, alpha $=0.01$ yields 99% confidence intervals.

We generate 100 independent samples of exponential data with $\mu=3$. muhat is an estimate of true_mu and muci is a 99% confidence interval around muhat. Notice that muci contains true_mu.

```
    true_mu = 3;
    [muhat,muci] = expfit(r,0.01)
    muhat =
        2.8835
    muci =
    2.1949
    3.6803
```

betafit, binofit, gamfit, normfit, poissfit, unifit, weibfit

Purpose

Syntax
 $X=\operatorname{expinv}(P, M U)$

Description

Examples

 argument.Inverse of the exponential cumulative distribution function (cdf).
expinv (P, MU) computes the inverse of the exponential cdf with parameter MU for the probabilities in P. The arguments P and $M U$ must be the same size except that a scalar argument functions as a constant matrix of the size of the other

The parameter MU must be positive and P must lie on the interval [0 1].
The inverse of the exponential cdf is:

$$
x=F(p \mid \mu)=-\mu \ln (1-p)
$$

The result, x, is the value such that the probability is p that an observation from an exponential distribution with parameter μ will fall in the range [0 $x]$.

Let the lifetime of light bulbs be exponentially distributed with mu equal to 700 hours. What is the median lifetime of a bulb?

```
expinv(0.50,700)
ans =
```

485.2030

So, suppose you buy a box of " 700 hour" light bulbs. If 700 hours is mean life of the bulbs, then half them will burn out in less than 500 hours.

Purpose Exponential probability density function (pdf).

Syntax $\quad Y=\operatorname{exppdf}(X, M U)$
Description exppdf($X, M U$) computes the exponential pdf with parameter settings $M U$ at the values in x. The arguments x and MU must be the same size except that a scal ar argument functions as a constant matrix of the same size of the other argument.

The parameter MU must be positive.
The exponential pdf is:

$$
y=f(x \mid \mu)=\frac{1}{\mu} e^{-\frac{x}{\mu}}
$$

The exponential pdf is the gamma pdf with its first parameter (a) equal to 1.
The exponential distribution is appropriate for modeling waiting times when you think the probability of waiting an additional period of timeis independent of how long you've already waited. F or example, the probability that a light bulb will burn out in its next minute of use is relatively independent of how many minutes it has already burned.

Examples

```
y = exppdf(5,1:5)
y =
    0.0067 0.0410 0.0630}00.0716 0.073
y = exppdf(1:5,1:5)
y =
\begin{tabular}{lllll}
0.3679 & 0.1839 & 0.1226 & 0.0920 & 0.0736
\end{tabular}
```


Purpose Random numbers from the exponential distribution.

Syntax \quad| R | $=\operatorname{exprnd}(M U)$ |
| ---: | :--- |
| R | $=\operatorname{exprnd}(M U, m)$ |
| R | $=\operatorname{exprnd}(M U, m, n)$ |

Description
R = exprnd(MU) generates exponential random numbers with mean MU. The size of R is the size of MU.
$R=\operatorname{exprnd}(M U, m)$ generates exponential random numbers with mean MU. m is a 1-by-2 vector that contains the row and column dimensions of R.
$R=\operatorname{exprnd}(M U, m, n)$ generates exponential random numbers with mean MU. The scalars m and n are the row and column dimensions of R.

Examples

```
n1 = exprnd(5:10)
    n1 =
        7.5943 18.3400 2.7113 3.0936 0.6078 9.5841
n2 = exprnd(5:10,[1 6])
n2 =
            3.2752 1.1110 23.5530 23.4303 5.7190 3.9876
n3 = exprnd(5,2,3)
    n3 =
        24.3339 13.5271 1.8788
        4.7932 4.3675 2.6468
```

| Purpose | Mean and variance for the exponential distribution. |
| :---: | :---: |
| Syntax | $[M, V]=\operatorname{expstat}(\mathrm{MU})$ |
| Description | For the exponential distribution:
 - The mean is μ.
 - The variance is μ^{2}. |
| Examples | $[\mathrm{m}, \mathrm{v}]=\operatorname{expstat}\left(\left[\begin{array}{lllll}1 & 10 & 100 & 1000\end{array}\right)\right.$ |
| | 10100 |
| | $v=$ |
| | 10010000100000 |

Purpose F cumulative distribution function (cdf).

Syntax $\quad P=\operatorname{fcdf}(X, V 1, V 2)$

Description $\quad \mathrm{fcdf}(\mathrm{X}, \mathrm{V} 1, \mathrm{~V} 2)$ computes the F cdf with parameters V 1 and V 2 at the values in X. The arguments $X, V 1$ and V2 must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.
Parameters V1 and V2 must contain positive integers.
The F cdf is:

$$
\left.F\left(x \mid v_{1}, v_{2}\right)=\int_{0}^{x \Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]} \frac{v_{1}\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{t^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) t\right]^{\frac{v_{1}+v_{2}}{2}}} d t
$$

The result, p, is the probability that a single observation from an F distribution with parameters $v 1$ and $v 2$ will fall in the interval [0 x].

Examples

This exampleillustrates an important and useful mathematical identity for the F distribution.

```
nu1 = 1:5;
nu2 = 6:10;
x = 2:6;
F1 = fcdf(x,nu1,nu2)
F1 =
    0.7930 0.8854 0.9481 0.9788 0.9919
F2 = 1 - fcdf(1./x,nu2,nu1)
F2 =
```

0.7930
0.8854
0.9481
0.9788
0.9919

Purpose Two-level full-factorial designs.

Syntax
 $X=f f 2 n(n)$

Description $\quad X=f f 2 n(n)$ creates a two-level full-factorial design, $X . n$ is the number of columns of x. The number of rows is 2^{n}.

Example
 $x=f f 2 n(3)$
 X =

| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |

x is the binary representation of the numbers from 0 to $2^{\mathrm{n}}-1$.
See Also fullfact

Purpose

Inverse of the F cumulative distribution function (cdf).

Syntax

Description

Examples
$X=\operatorname{finv}(P, V 1, V 2)$
finv ($\mathrm{P}, \mathrm{V} 1, \mathrm{~V} 2$) computes the inverse of the F cdf with numerator degrees of freedom, V 1 , and denominator degrees of freedom, V 2 , for the probabilities in P. The arguments P, V1 and V2 must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters V1 and V2 must both be positive integers and P must lie on the interval [01].

The F inverse function is defined in terms of the F cdf:

$$
\begin{aligned}
& x=F^{-1}\left(p \mid v_{1}, v_{2}\right)=\left\{x: F\left(x \mid v_{1}, v_{2}\right)=p\right\} \\
& \text { where } p=F\left(x \mid v_{1}, v_{2}\right)=\int_{0}^{x \Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right.} \frac{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}{\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{t^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) t\right]^{\frac{v_{1}+v_{2}}{2}}} d t} l
\end{aligned}
$$

Find a valuethat should exceed 95% of the samples from an F distribution with 5 degrees of freedom in the numerator and 10 degrees of freedom in the denominator.

```
x = finv(0.95,5,10)
x =
```

3.3258

You would observe values greater than 3.3258 only 5\% of the time by chance.

fpdf

Purpose F probability density function (pdf).

Syntax
 $Y=f p d f(X, V 1, V 2)$

Description $\quad f p d f(X, V 1, V 2)$ computes the F pdf with parameters V1 and V2 at the values in X . The arguments $\mathrm{X}, \mathrm{V} 1$ and V 2 must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters V1 and V2 must both be positive integers and x must lie on the interval [0∞).

The probability density function for the F distribution is:

$$
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x^{\frac{v_{1}+v_{2}}{2}}\right.}
$$

Examples

```
y = fpdf(1:6,2,2)
y =
    0.2500 0.1111 0.0625 0.0400 0.0278 0.0204
z = fpdf(3,5:10,5:10)
z =
\[
\begin{array}{llllll}
0.0689 & 0.0659 & 0.0620 & 0.0577 & 0.0532 & 0.0487
\end{array}
\]
```


Purpose Random numbers from the F distribution.

Syntax \quad| R | $=f r n d(V 1, V 2)$ |
| ---: | :--- |
| R | $=f r n d(V 1, V 2, m)$ |
| R | $=f r n d(V 1, V 2, m, n)$ |

Description

Examples

```
n1 = frnd(1:6,1:6)
    n1 =
        n2 = frnd(2,2,[2 3])
        n2 =
            0.3186 0.9727 3.0268
            0.2052 148.5816 0.2191
        n3 = frnd([11 2 3;4 5 6],1,2,3)
        n3 =
            0.6233 0.2322 31.5458
            2.5848 0.2121 4.4955
```

 \(\begin{array}{llllll}0.0022 & 0.3121 & 3.0528 & 0.3189 & 0.2715 & 0.9539\end{array}\)

fstat

Purpose

Syntax

Description
For the F distribution:

- The mean, for values of n_{2} greater than 2 , is:

$$
\frac{v_{2}}{v_{2}-2}
$$

- The variance, for values of n greater than 4 , is:

$$
\frac{2 v_{2}^{2}\left(v_{1}+v_{2}-2\right)}{v_{1}\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}
$$

The mean of the F distribution is undefined if $v 2$ is less than 3 . The variance is undefined for $v 2$ less than 5 .

Examples fstat returns NaN when the mean and variance are undefined.

```
        [m,v] = fstat(1:5,1:5)
        m =
            NaN NaN 3.0000 2.0000 1.6667
        v =
            NaN
                NaN
                NaN
                    NaN
                                    8.8889
```

Purpose

Syntax
 Description

Example

Interactive contour plot of a function.

```
fsurfht('fun',xlims,ylims)
fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5)
```

fsurfht('fun', xlims, ylims) is an interactive contour plot of the function specified by the text variable fun. The x-axis limits are specified by xlims $=$ [xmin xmax] and the y-axis limits specified by ylims.
fsurfht('fun', xlims, ylims, p1, p2, p3, p4, p5) allows for five optional parameters that you can supply to the function ' fun'. Thefirst two arguments of fun are the x-axis variable and y-axis variable, respectively.

There are vertical and horizontal referencelines on the plot whose intersection defines the current x-value and y-value. You can drag these dotted white reference lines and watch the calculated z-values (at the top of the plot) update simultaneously. Alternatively, you can get a specific z-value by typing the x-value and y-value into editable text fields on the x-axis and y-axis respectively.

Plot the Gaussian likelihood function for the gas.mat data.
load gas
Write the M-file, gauslike.m.

```
```

function z = gauslike(mu,sigma,p1)

```
```

function z = gauslike(mu,sigma,p1)
n = length(p1);
n = length(p1);
z = ones(size(mu));
z = ones(size(mu));
for i = 1:n
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
z = z .* (normpdf(p1(i),mu,sigma));
end

```
```

end

```
```

gauslike calls normpdf treating the data sample as fixed and the parameters μ and σ as variables. Assume that the gas prices are normally distributed and plot the likelihood surface of the sample.

```
fsurfht('gauslike',[112 118],[3 5],price1)
```


The sample mean is the x-value at the maximum, but the sample standard deviation is not the y-value at the maximum.

```
mumax = mean(price1)
mumax =
    115.1500
sigmamax = std(price1)*sqrt(19/20)
sigmamax =
    3.7719
```


Purpose
 Full-factorial experimental design.

Syntax
 design = fullfact(levels)

Description design = fullfact(levels) givethefactor settings for a full factorial design. Each element in the vector levels specifies the number of unique values in the corresponding column of design.

For example, if thefirst element of levels is 3, then the first column of design contains only integers from 1 to 3.

Example

If levels = [24 4], fullfact generates an eight run design with two levels in the first column and four in the second column.

```
d = fullfact([2 4])
d =
1
1
2
2
3
2 3
4
2 4
```

See Also ff2n, dcovary, daugment, cordexch

gamcdf

Purpose Gamma cumulative distribution function (cdf).

Syntax

Description

Examples

```
a = 1:6;
b = 5:10;
prob = gamcdf(a.*b,a,b)
prob =
    0.6321 0.5940 0.5768 0.5665 0.5595 0.5543
```

The mean of the gamma distribution is the product of the parameters, $a * b$. In this example as the mean increases, it approaches the median (i.e., the distribution gets more symmetric).

Purpose

Parameter estimates and confidence intervals for gamma distributed data.

gaminv

Purpose Inverse of the gamma cumulative distribution function (cdf).
Syntax $\quad X=\operatorname{gaminv}(P, A, B)$
Description gaminv($\mathrm{P}, \mathrm{A}, \mathrm{B}$) computes the inverse of the gamma cdf with parameters A and B for the probabilities in P. The arguments P, A and B must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters A and B must both be positive and P must lie on the interval [01].

The gamma inverse function in terms of the gamma cdf is:

$$
\begin{aligned}
& x=F^{-1}(p \mid a, b)=\{x: F(x \mid a, b)=p\} \\
& \text { where } p=F(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} \int_{0}^{x} t^{a-1} e^{-\frac{t}{b}} d t
\end{aligned}
$$

Algorithm

Examples

Thereis noknown analytic colution to the integral equation above. gaminv uses an iterative approach (Newton's method) to converge to the sol ution.

This example shows the relationship between the gamma cdf and its inverse function.

```
a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)
x =
```

$$
\begin{array}{lllll}
1.0000 & 2.0000 & 3.0000 & 4.0000 & 5.0000
\end{array}
$$

Purpose

Syntax
 Description

Negative gamma log-likelihood function.

```
logL = gamlike(params,data)
[logL,info] = gamlike(params,data)
```

logL = gamlike(params, data) returns the negative of the gamma log-likelihood function for the parameters, params, given data. The length of the vector, logL, is the length of the vector, data.
[logL,info] = gamlike(params,data) adds Fisher's information matrix, info. The diagonal elements of info are the asymptotic variances of their respective parameters.
gamlike is a utility function for maximum likelihood estimation of the gamma distribution. Since gamlike returns the negative gamma log-likelihood function, minimizing gamlike using fmins is the same as maximizing the likelihood.

Example

Continuing the example for gamfit:

```
a = 2; b = 3;
\(r=\) gamrnd(a,b,100,1);
\(\log \mathrm{L}=\)
    267.5585
info =
        \(0.0690-0.0790\)
        -0.0790 0.1220
```

[logL,info] = gamlike([2.1990 2.8069],r)

See Also betalike, gamfit, mle, weiblike

gampdf

Purpose Gamma probability density function (pdf).
Syntax $\quad Y=\operatorname{gampdf}(X, A, B)$
Description gampdf(X, A, B) computes thegamma pdf with parameters A and B at the values in X. The arguments X, A and B must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters A and B must both be positive and X must lie on the interval $[0 \infty$).

The gamma pdf is:

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

Gamma probability density function is useful in reliability models of lifetimes. The gamma distribution is more flexible than the exponential in that the probability of surviving an additional period may depend on age. Special cases of the gamma function are the exponential and χ^{2} functions.

Examples The exponential distribution is a special case of the gamma distribution.

```
mu = 1:5;
y = gampdf(1,1,mu)
y =
    0.3679 0.3033 0.2388 0.1947 0.1637
y1 = exppdf(1,mu)
y1 =
    0.3679 0.3033 0.2388 0.1947 0.1637
```

Purpose

Syntax
 Description

Examples

Purpose Mean and variance for the gamma distribution.

Syntax $\quad[M, V]=\operatorname{gamstat}(A, B)$

Description For the gamma distribution:

- The mean is ab.
- The variance is ab^{2}.

Examples

```
[m,v] = gamstat(1:5,1:5)
m =
    1 4 9 9 16 25
v =
    1 
[m,v] = gamstat(1:5,1./(1:5))
m =
    1 1 1 1 1 1 1 
v =
    1.0000 0.5000 0.3333 0.2500 0.2000
```


Purpose Geometric cumulative distribution function (cdf).

Syntax
 $Y=\operatorname{geocdf}(X, P)$

Description geocdf(X, P) computes the geometric cdf with probabilities, P, at the values in X. The arguments X and P must be the same size except that a scalar argument functions as a constant matrix of the same size as the other argument.

The parameter, P , is on the interval [01].
The geometric cdf is:

$$
y=F(x \mid p)=\sum_{i=0}^{\text {floor } x} p q^{i}
$$

where: $q=1-p$
The result, y , is the probability of observing up to x trials before a success when the probability of success in any given trial is p.

Examples

Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing three or fewer tails before getting a heads?

$$
\begin{aligned}
& p=\operatorname{geocdf}(3,0.5) \\
& p=
\end{aligned}
$$

0.9375

geoinv

Purpose Inverse of the geometric cumulative distribution function (cdf).

Syntax
 $X=\operatorname{geoinv}(Y, P)$

Description geoinv (Y, P) returns the smallest integer X such that the geometric cdf evaluated at X is equal to or exceeds Y. You can think of Y as the probability of observing X successes in a row in independent trials where P is the probability of success in each trial.

The arguments P and Y must lie on the interval [01]. Each X is a positive integer.

Examples

The probability of correctly guessing the result of 10 coin tosses in a row is less than 0.001 (unless the coin is not fair.)

```
psychic = geoinv(0.999,0.5)
psychic =
```


9

The example below shows the inverse method for generating random numbers from the geometric distribution.

```
rndgeo = geoinv(rand (2,5),0.5)
rndgeo =
\begin{tabular}{lllll}
0 & 1 & 3 & 1 & 0
\end{tabular}
\begin{tabular}{lllll}
0 & 1 & 0 & 2 & 0
\end{tabular}
```


Purpose Geometric mean of a sample.

Syntax

Description geomean calculates the geometric mean of a sample. For vectors, geomean (x) is the geometric mean of the elements in x. For matrices, geomean (X) is a row vector containing the geometric means of each column.

The geometric mean is:

$$
m=\left[\prod_{i=1}^{n} x_{i}\right]^{\frac{1}{n}}
$$

Examples

See Also

The sample average is greater than or equal to the geometric mean.

```
x = exprnd(1,10,6);
geometric = geomean(x)
geometric =
    0.7466 0.6061 0.6038
average = mean(x)
average =
    1.3509 1.1583 0.9741 0.5319 1.0088
```

mean, median, harmmean, trimmean

geopdf

Purpose Geometric probability density function (pdf).

Syntax

Description

Examples

$Y=$ geopdf(X, P)
geocdf (X, P) computes the geometric pdf with probabilities, P, at the values in X. The arguments X and P must be the same size except that a scal ar argument functions as a constant matrix of the same size as the other argument.

The parameter, P , is on the interval [01].
The geometric pdf is:

$$
y=f(x \mid p)=p q^{x} I_{(0,1, K)}(x)
$$

where: $q=1-p$
Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing exactly three tails before getting a heads?

$$
\begin{aligned}
& p=\operatorname{geopdf}(3,0.5) \\
& p=
\end{aligned}
$$

$$
0.0625
$$

Purpose

Random numbers from the geometric distribution.

Syntax
 Description

$R=\operatorname{geornd}(P)$
$\mathrm{R}=\operatorname{geornd}(\mathrm{P}, \mathrm{m})$
$R=\operatorname{geornd}(P, m, n)$

Examples

```
r1 = geornd(1 ./ 2.^(1:6))
r1 =
    2 10 2 5 5 2 0
r2 = geornd(0.01,[1 5])
r2 =
    65}1018\quad334 291 63 
r3 = geornd(0.5,1,6)
r3 =
\begin{tabular}{llllll}
0 & 7 & 1 & 3 & 1 & 0
\end{tabular}
```

Purpose Mean and variance for the geometric distribution.
Syntax $\quad[M, V]=\operatorname{geostat}(P)$
Description F or the geometric distribution:

- The mean is $\frac{q}{p}$.
- The variance is $\frac{q}{p^{2}}$.
where $q=1-p$.
Examples
[m,v] = geostat(1./(1:6))
$\mathrm{m}=$
$v=\begin{array}{llllll}0 & 1.0000 & 2.0000 & 3.0000 & 4.0000 & 5.0000 \\ & & & & & \\ & 2.0000 & 6.0000 & 12.0000 & 20.0000 & 30.0000\end{array}$

Purpose
Interactively draw a line in a figure.

Syntax

gline(fig)
h = gline(fig)
gline
Description
gline (fig) draws a line segment by clicking the mouse at the two end-points of the line segment in the figure, fig. A rubber band line tracks the mouse movement.
$\mathrm{h}=\mathrm{gline}(\mathrm{fig})$ returns the handle to the line in h .
gline with no input arguments draws in the current figure.
See Also refline, gname

Purpose Label plotted points with their case names or case number.

```
Syntax gname('cases')
gname
h = gname('cases',line_handle)
```

Description gname('cases') displays the graph window, puts up a cross-hair, and waits for a mouse button or keyboard key to be pressed. Position the cross-hair with the mouse and click once near each point that you want to label. When you are done, press the Return or Enter key and the labels will appear at each point that you clicked. 'cases ' is a string matrix. E ach row is the casename of a data point.
gname with no arguments labels each case with its case number.
h = gname(cases, line_handle) returns a vector of handles to thetext objects on the plot. Use the scalar, line_handle, to identify the correct line if there is more than one line object on the plot.

Example Let's use the city ratings datasets to find out which cities arethe best and worst for education and the arts.

```
load cities
education = ratings(:,6); arts = ratings(:,7);
plot(education,arts,'+')
gname(names)
```


See Also gtext

| Purpose | Summary statistics by group. |
| :--- | :--- |
| Syntax | means $=$ grpstats $(X$, group $)$ |
| | $[$ means, sem, counts $]=$ grpstats $(X$, group $)$ |
| | grpstats $(x$, group $)$ |
| | grpstats $(x$, group, alpha $)$ |

Description

Example

See Also

tabulate, crosstab

2-104

Purpose

Syntax

Description

Harmonic mean of a sample of data.
$\mathrm{m}=$ harmmean (X)
harmmean calculates the harmonic mean of a sample. F or vectors, harmmean (x) is the harmonic mean of the elements in x. For matrices, harmmean (X) is a row vector containing the harmonic means of each column.

The harmonic mean is:

$$
m=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}
$$

Examples

average $=$ mean (x)
average $=$
$\begin{array}{llllll}1.3509 & 1.1583 & 0.9741 & 0.5319 & 1.0088 & 0.8122\end{array}$

See Also

mean, median, geomean, trimmean

Purpose Plot histograms.

Syntax hist(y)

```
hist(y,nb)
hist(y,x)
[n,x] = hist(y,...)
```


Description

Examples Generate bell-curve histograms from Gaussian data.

See Also hist is a function in MATLAB.
hist calculates or plots histograms.
hist (y) draws a 10-bin histogram for the data in vector y . The bins areequally spaced between the minimum and maximum values in y.
hist (y, nb) draws a histogram with nb bins.
hist (y, x) draws a histogram using the bins in the vector, x.
$[n, x]=\operatorname{hist}(y),[n, x]=\operatorname{hist}(y, n b)$, and $[n, x]=\operatorname{hist}(y, x)$ do not draw graphs, but return vectors n and x containing the frequency counts and the bin locations such that bar (x, n) plots the histogram. This is useful in situations where more control is needed over the appearance of a graph, for example, to combine a histogram into a more el aborate plot statement.

Purpose

Syntax
 Description

Histogram with superimposed normal density.

```
histfit(data)
histfit(data,nbins)
h = histfit(data,nbins)
```

histfit(data, nbins) plots a histogram of the values in the vector data using nbins bars in the histogram. With one input argument, nbins is set to the square root of the number of elements in data.
$\mathrm{h}=$ histfit(data, nbins) returns a vector of handles to the plotted lines. h(1) is the handle to the histogram, $\mathrm{h}(2)$ is the handle to the density curve.

Example

See Also

hougen

Purpose Hougen-Watson model for reaction kinetics.

Syntax \quad yhat $=$ hougen $($ beta,$x)$

Description yhat $=$ hougen (beta, x) gives the predicted values of the reaction rate, yhat, as a function of the vector of parameters, beta, and the matrix of data, x. beta must have 5 elements and x must have three columns.
hougen is a utility function for rsmdemo.
The model form is:

$$
\hat{y}=\frac{\beta_{1} x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} x_{1}+\beta_{3} x_{2}+\beta_{4} x_{3}}
$$

Reference Bates, D., and D. Watts, Nonlinear Regression Analysis and Its Applications, Wiley 1988. p. 271-272.

See Also

rsmdemo

Purpose

Syntax

Description

Examples

Hypergeometric cumulative distribution function (cdf).
$P=\operatorname{hygecdf}(X, M, K, N)$
hygecdf (X, M, K, N) computes the hypergeometric cdf with parameters M, K, and N at the values in X. The arguments X, M, K, and N must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The hypergeometric cdf is:

$$
p=F(x \mid M, K, N)=\sum_{i=0}^{x} \frac{\binom{K}{i}\binom{M-K}{N-i}}{\binom{M}{N}}
$$

The result, p , is the probability of drawing up to x items of a possible K in N drawings without replacement from a group of M objects.

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing zero to two defective floppies if you select 10 at random?

```
p = hygecdf(2,100,20,10)
    p =
        0.6812
```


hygeinv

Purpose Inverse of the hypergeometric cumulative distribution function (cdf).

Syntax $\quad X=\operatorname{hygeinv}(P, M, K, N)$

Description hygeinv (P, M, K, N) returns the smallest integer X such that the hypergeometric cdf evaluated at X equals or exceeds P. You can think of P as the probability of observing X defective items in N drawings without replacement from a group of M items where K are defective.

Examples

Suppose you are the Quality Assurance manager of a floppy disk manufacturer. The production line turns out floppy disks in batches of 1,000. You want to sample 50 disks from each batch to see if they have defects. You want to accept 99% of the batches if there are no more than 10 defective disks in the batch. What is the maximum number of defective disks should you allow in your sample of 50?

```
x = hygeinv(0.99,1000,10,50)
x =
```

3
What is the median number of defective floppy disks in samples of 50 disks from batches with 10 defective disks?

```
x = hygeinv(0.50,1000,10,50)
x =
```


Purpose

Syntax

Description

Examples

Hypergeometric probability density function (pdf).
$Y=h y g e p d f(X, M, K, N)$
hygecdf ($\mathrm{X}, \mathrm{M}, \mathrm{K}, \mathrm{N}$) computes the hypergeometric pdf with parameters M, K, and N at the values in X. The arguments X, M, K, and N must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters M, K, and N must be positive integers. Also X must be less than or equal to all the parameters and N must be less than or equal to M.

The hypergeometric pdf is:

$$
y=f(x \mid M, K, N)=\frac{\binom{K}{x}\binom{M-K}{N-x}}{\binom{M}{N}}
$$

The result, y, is the probability of drawing exactly x items of a possible K in n drawings without replacement from group of M objects.

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing 0 through 5 defective floppy disks if you select 10 at random?

```
p = hygepdf(0:5,100,20,10)
p =
    0.0951 0.2679 0.3182 0.2092 0.0841 0.0215
```


hygernd

Purpose

Syntax \quad| R | $=\operatorname{hygernd}(M, K, N)$ |
| ---: | :--- |
| R | $=\operatorname{hygernd}(M, K, N, m m)$ |
| R | $=\operatorname{hygernd}(M, K, N, m m, n n)$ |

$$
\begin{aligned}
& R=\operatorname{hygernd}(M, K, N) \\
& R=\operatorname{hygernd}(M, K, N, m m) \\
& R=\operatorname{hygernd}(M, K, N, m m, n n)
\end{aligned}
$$

Random numbers from the hypergeometric distribution.

Description $\quad R=$ hygernd (M, K, N) generates hypergeometric random numbers with parameters M, K and N. The size of R is the common size of M, K, and N if all are matrices. If any parameter is a scalar, the size of R is the common size of the nonscalar parameters.
$R=$ hygernd ($M, K, N, m m$) generates hypergeometric random numbers with parameters M, K, and $N . m m$ is a 1-by-2 vector that contains the row and col umn dimensions of R.
$R=$ hygernd ($M, K, N, m m, n n$) generates hypergeometric random numbers with parameters M, K, and N. The scalars $m m$ and $n n$ are the row and column dimensions of R.

Examples

```
numbers = hygernd(1000,40,50)
numbers =
```

Purpose

Syntax

Description
F or the hypergeometric distribution:

- The mean is $N \frac{K}{M}$.
- The variance is $N \frac{K}{M} \frac{M-K}{M} \frac{M-N}{M-1}$.

Examples
Mean and variance for the hypergeometric distribution.
[MN, V] = hygestat (M,K,N)

The hypergeometric distribution approaches the binomial where $p=K / M$ as M goes to infinity.
[m,v] = hygestat(10.^(1:4),10.^(0:3), 9)
$\mathrm{m}=$
$\begin{array}{llll}0.9000 & 0.9000 & 0.9000 & 0.9000\end{array}$
v =
0.0900
$0.7445 \quad 0.8035$
0.8094
[m,v] = binostat(9,0.1)
m =
0.9000
v =
0.8100

icdf

Purpose Inverse of a specified cumulative distribution function (icdf).

Syntax $\quad X=\operatorname{icdf}(' n a m e ', P, A 1, A 2, A 3)$

Description icdf is a utility routine allowing you to access all the inverse cdfs in the Statistics Tool box using the name of the distribution as a parameter.
icdf('name', P, A1, A2, A3) returns a matrix of critical values, X. 'name' is a string containing the name of the distribution. P is a matrix of probabilities, and A, B, and C are matrices of distribution parameters. Depending on the distribution some of the parameters may not be necessary.

The arguments P, A1, A2, and A3 must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

Examples

```
x = icdf('Normal',0.1:0.2:0.9,0,1)
x =
    -1.2816 -0.5244 0
x = icdf('Poisson',0.1:0.2:0.9,1:5)
x =
    1 1 1 3 5
```

Purpose Calculate the inconsistency coefficient of a cluster tree.

```
Syntax Y = inconsistent(Z)
Y = inconsistent(Z,d)
```

Description
$Y=$ inconsistent (Z) computes the inconsistency coefficient for each link of the hierarchical cluster tree, $\mathrm{z} . \mathrm{Z}$ is an $\mathrm{m}-1$ by 3 matrix generated by the linkage function. The inconsistency coefficient characterizes each link in a cluster tree by comparing its length with the average length of other links at the same level of thehierarchy. Thehigher the value of this coefficient, the less similar the objects connected by the link.
$Y=$ inconsistent (Z,d) computes the inconsistency coefficient for each link in the hierarchical cluster tree, Z , to depth d . d is an integer denoting the number of levels of the cluster tree that are included in the calculation. By default, $d=2$.

The output, Y , is an $\mathrm{m}-1$ by 4 matrix formatted as follows.

Column Description

1 Mean of the lengths of all the links included in the calculation.
2 Standard deviation of all the links included in the calculation.
3 Number of links included in the calculation.
$4 \quad$ Inconsistency coefficient.

F or each link, k, the inconsistency coefficient is calculated as:

$$
Y(k, 4)=(z(k, 3)-Y(k, 1)) / Y(k, 2)
$$

F or leaf nodes, nodes that have no further nodes under them, the inconsistency coefficient is set to 0 .

inconsistent

Example

```
rand('seed',12);
X = rand(10,2);
Y = pdist(X);
Z = linkage(Y,'centroid');
W = inconsistent(Z,3)
W =
```

| 0.0423 | 0 | 1.0000 | 0 |
| ---: | ---: | ---: | ---: |
| 0.1406 | 0 | 1.0000 | 0 |
| 0.1163 | 0.1047 | 2.0000 | 0.7071 |
| 0.2101 | 0 | 1.0000 | 0 |
| 0.2054 | 0.0886 | 3.0000 | 0.6792 |
| 0.1742 | 0.1762 | 3.0000 | 0.6568 |
| 0.2336 | 0.1317 | 4.0000 | 0.6408 |
| 0.3081 | 0.2109 | 5.0000 | 0.7989 |
| 0.4610 | 0.3728 | 4.0000 | 0.8004 |

See Also
cluster, cophenet, clusterdata, dendrogram, linkage, pdist, squareform

2-116

Purpose Interquartile range (IQR) of a sample.

Syntax

Description

Examples

This Monte Carlo simulation shows the relative efficiency of the IQR to the sample standard deviation for normal data.

```
x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413 * iqr(x);
efficiency = (norm(s - 1)./norm(s_IQR - 1)).^2
efficiency =
    0.3297
```

See Also std, mad, range

kurtosis

Purpose Sample kurtosis.

Syntax
k = kurtosis(X)

Description $\quad k=$ kurtosis (X) returns the sample kurtosis of X. For vectors, kurtosis (x) is the kurtosis of the elements in the vector, x. For matrices kurtosis (X) returns the sample kurtosis for each column of X.

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution is 3 . Distributions that are more outlier-prone than the normal distribution have kurtosis greater than 3; distributions that are less outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as

$$
k=\frac{E(x-\mu)^{4}}{\sigma^{4}}
$$

where $E(x)$ is the expected value of x.
N ote: Some definitions of kurtosis subtract 3 from the computed value, so that the normal distribution has kurtosis of 0 . The kurtosis function does not use this convention.

Example

```
X = randn([5 4])
X =
\begin{tabular}{rrrr}
1.1650 & 1.6961 & -1.4462 & -0.3600 \\
0.6268 & 0.0591 & -0.7012 & -0.1356 \\
0.0751 & 1.7971 & 1.2460 & -1.3493 \\
0.3516 & 0.2641 & -0.6390 & -1.2704 \\
-0.6965 & 0.8717 & 0.5774 & 0.9846
\end{tabular}
k = kurtosis(X)
k =
    2.1658 1.2967 1.6378 1.9589
```

See Also mean, moment, skewness, std, var

2-118

Purpose Leverage values for a regression.

Syntax \quad| h | $=$ leverage (DATA) |
| :--- | :--- |
| | h |$=$ leverage(DATA, 'model')

Description

Example

Algorithm

Reference

See Also

linkage

Purpose Create hierachical cluster tree.

| Syntax | $Z=\operatorname{linkage}(Y)$ |
| ---: | :--- |
| | $Z=\operatorname{linkage}\left(Y,{ }^{\prime}\right.$ method' $)$ |

Description
$\mathrm{Z}=$ linkage (Y) creates a hierarchical cluster tree, using the Single Linkage algorithm. The input matrix, Y , is the distance vector output by the pdist function, a vector of length ($\mathrm{m}-1$) $\cdot \mathrm{m} / 2$ by 1 , where m is the number of objects in the original dataset.
$\mathrm{Z}=$ linkage (Y , 'method') computes a hierarchical cluster tree using the algorithm specified by 'method'. method can be any of the following character strings that identify ways to create the cluster hierarchy. Their definitions are explained in the section, "Mathematical Definitions."

| String | Meaning |
| :--- | :--- |
| 'single ' | Shortest distance (default) |
| 'complete ' | Largest distance |
| 'average ' | Average distance |
| 'centroid' | Centroid distance |
| 'ward' | Incremental sum of squares |

The output, z , is an $\mathrm{m}-1$ by 3 matrix containing cluster tree information. The leaf nodes in the cluster hierarchy are the objects in the original dataset, numbered from 1 to m . They are the singleton clusters from which all higher clusters are built. Each newly formed cluster, corresponding to row i in z , is assigned the index $\mathrm{m}+\mathrm{i}$, where m is the total number of initial leaves.
Columns 1 and $2, z(i, 1: 2)$, contain the indices of the objects that were linked in pairs to form a new cluster. This new cluster is assigned the index valuem+i. There are $\mathrm{m}-1$ higher clusters that correspond to the interior nodes of the hierarchical cluster tree.

Column $3, \mathrm{z}(\mathrm{i}, 3)$, contains the corresponding linkage distances between the objects paired in the clusters at each row i.

linkage

F or example, consider a case with 30 initial nodes. If the tenth cluster formed by the linkage function combines object 5 and object 7 and their distance is 1.5, then row 10 of Z will contain the values ($5,7,1.5$). This newly formed cluster will have the index $10+30=40$. If cluster 40 shows up in a later row, that means this newly formed cluster is being combined again into some bigger cluster.

Mathematical Definitions. The 'method' argument is a character string that specifies the algorithm used to generate the hierachical cluster tree information. These linkage algorithms are based on various measurements of proximity between two groups of objects. If n_{r} is the number of objects in cluster r and n_{s} is the number of objects in cluster s, and $x_{r i}$ is the ith object in cluster r, the definitions of these various measurements are as follows:

- Singlelinkage, also called nearest neighbor, uses the smallest distance between objects in the two groups.

$$
d(r, s)=\min \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(i, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
$$

- Completelinkage, also called furthest neighbor, uses the largest distance between objects in the two groups.

$$
d(r, s)=\max \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(1, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
$$

- Average linkage uses the average distance between all pairs of objects in cluster r and cluster s.

$$
\mathrm{d}(\mathrm{r}, \mathrm{~s})=\frac{1}{\mathrm{n}_{\mathrm{r}} \mathrm{n}_{\mathrm{s}}} \sum_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{r}}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{s}}} \operatorname{dist}\left(\mathrm{x}_{\mathrm{r} i}, \mathrm{x}_{\mathrm{sj}}\right)
$$

- Centroid linkage uses the distance between the centroids of the two groups
$d(r, s)=d\left(\bar{x}_{r}, \bar{x}_{s}\right)$
where:

$$
\bar{x}_{r}=\frac{1}{n_{r}} \sum_{i=1}^{n_{r}} x_{r i}
$$

linkage

and \bar{x}_{s} is defined similarly.

- Ward linkage uses the incremental sum of squares; that is, the increase in the total within-group sum of squares as a result of joining groups r and s. It is given by
$d(r, s)=n_{r} n_{s} d_{r s}^{2} /\left(n_{r}+n_{s}\right)$
where $d_{r s}^{2}$ is the distance between cluster r and cluster s defined in the Centroid linkage. The within-group sum of squares of a cluster is defined as the sum of the squares of the distance between all objects in the cluster and the centroid of the cluster.

| Example | $\begin{aligned} & X=\left[\begin{array}{ll} 3 & 1.7 ; ~ \\ Y & 1 \\ Y=\operatorname{pdist}(x) ; \\ Z & =\operatorname{linkage}(y) \\ Z= \end{array}\right. \\ & \text { Z } \end{aligned}$ | | $2 \text { 2.5; }$ |
| :---: | :---: | :---: | :---: |
| | | | |
| | 2.0000 | 5.0000 | 0.2000 |
| | 3.0000 | 4.0000 | 0.5000 |
| | 8.0000 | 6.0000 | 0.5099 |
| | 1.0000 | 7.0000 | 0.7000 |
| | 11.0000 | 9.0000 | 1.2806 |
| | 12.0000 | 10.0000 | 1.3454 |

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, pdist, squareform

Purpose Lognormal cumulative distribution function.

Syntax $\quad P=\operatorname{logncdf}(X, M U$, SIGMA $)$

Description \quad P $=\operatorname{logncdf}(X, M U$, SIGMA $)$ computes the lognormal cdf with mean MU and standard deviation SIGMA at the values in X .

The size of P is the common size of $X, M U$ and SIGMA. A scal ar input functions as a constant matrix of the same size as the other inputs.

The lognormal cdf is:

$$
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{x} \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
$$

Example

Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 102-105.

See Also cdf, logninv, lognpdf, lognrnd, lognstat

logninv

Purpose

Syntax

Description

I nverse of the lognormal cumulative distribution function (cdf).
X = logninv(P,MU,SIGMA)
X = logninv(P,MU,SIGMA) computes the inverse lognormal cdf with mean MU and standard deviation SIGMA, at the probabilities in P.

The size of X is the common size of $P, M U$ and SIGMA.
We define the lognormal inverse function in terms of the lognormal cdf.

$$
x=F^{-1}(p \mid \mu, \sigma)=\{x: F(x \mid \mu, \sigma)=p\}
$$

where

$$
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{x} \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
$$

Example

[^0]
Purpose Lognormal probability density function (pdf).

Syntax $\quad Y=\operatorname{lognpdf}(X, M U$, SIGMA $)$

Description $\quad Y=\operatorname{logncdf}(X, M U$, SIGMA $)$ computes the lognormal cdf with mean MU and standard deviation SIGMA at the values in X .

The size of Y is the common size of $X, M U$ and SIGMA. A scal ar input functions as a constant matrix of the same size as the other inputs.

The lognormal pdf is:

$$
y=f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\ln (x)-\mu)^{2}}{2 \sigma^{2}}}
$$

Example

Reference

See Also
Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of Statistics, Third Edition, McGraw Hill 1974 p. 540-541.
logncdf, logninv, lognrnd, lognstat

| Purpose | Random matrices from the lognormal distribution. |
| :--- | :--- |
| Syntax | R $=\operatorname{lognrnd}($ MU, SIGMA $)$ |
| | R $=\operatorname{lognrnd}($ MU, SIGMA, m) |
| | R $=\operatorname{lognrnd}($ MU, SIGMA, $m, n)$ |

Description $\quad R=$ lognrnd (MU,SIGMA) generates lognormal random numbers with parameters, MU and SIGMA. The size of R is the common size of MU and SIGMA if both are matrices. If either parameter is a scalar, the size of R is the size of the other parameter.

R = lognrnd(MU,SIGMA, m) generates lognormal random numbers with parameters MU and SIGMA. m is a 1-by-2 vector that contains therow and column dimensions of R .
$R=$ lognrnd(MU,SIGMA, m, n) generates lognormal random numbers with parameters MU and SIGMA. The scalars m and n are the row and column dimensions of R.

Example

$r=\operatorname{lognrnd}(0,1,4,3)$
$r=$

| 3.2058 | 0.4983 | 1.3022 |
| :--- | :--- | :--- |
| 1.8717 | 5.4529 | 2.3909 |
| 1.0780 | 1.0608 | 0.2355 |
| 1.4213 | 6.0320 | 0.4960 |

Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 102-105.

See Also random, logncdf, logninv, lognpdf, lognstat

2-126

Purpose Mean and variance for the lognormal distribution.

Syntax
 [M,V] = lognstat(MU,SIGMA)

Description $[M, V]=$ lognstat (MU,SIGMA) returns themean and variance of the lognormal distribution with parameters MU and SIGMA. The size of M and V is the common size of MU and SIGMA if both are matrices. If either parameter is a scalar, the size of M and V is the size of the other parameter.

For the lognormal distribution, the mean is:

$$
e^{\left(\mu+\frac{\sigma^{2}}{2}\right)}
$$

The variance is:

$$
e^{\left(2 \mu+2 \sigma^{2}\right)}-e^{\left(2 \mu+\sigma^{2}\right)}
$$

| Example | $[m, v]=$ lognstat $(0,1)$ |
| ---: | :--- |
| $m=$ | |
| | 1.6487 |
| $v=$ | |
| | 7.0212 |

Reference

Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of
Statistics, Third Edition, McGraw Hill 1974 p. 540-541.

See Also logncdf, logninv, lognrnd, lognrnd

Isline

Purpose

Syntax

Description

Example

Least squares fit line(s).
lsline
h = lsline
lsline superimposes the least squares line on each line object in the current axes (except LineStyles '-','--','--').
$h=1 s l i n e ~ r e t u r n s ~ t h e ~ h a n d l e s ~ t o ~ t h e ~ l i n e ~ o b j e c t s . ~$

```
    y = [l2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
    plot(y,'+');
    lsline;
```


See Also

polyfit, polyval

Purpose Mean absolute deviation (MAD) of a sample of data.

Syntax
 $y=\operatorname{mad}(X)$

Description mad (X) computes the average of the absolute differences between a set of data and the sample mean of that data. F or vectors, $\operatorname{mad}(x)$ returns the mean absolute deviation of the elements of x. For matrices, $\operatorname{mad}(X)$ returns the MAD of each column of x.

The MAD is less efficient than the standard deviation as an estimate of the spread, when the data is all from the normal distribution.

Multiply the MAD by 1.3 to estimate σ (the second parameter of the normal distribution).

Examples This example shows a M onte Carlo simulation of the relative efficiency of the

 MAD to the sample standard deviation for normal data.```
x = normrnd(0,1,100,100);
s = std(x);
s_MAD = 1.3 * mad(x);
efficiency = (norm(s - 1)./norm(s_MAD - 1)).^2
 efficiency =
 0.5972
```

See Also std, range

## Purpose Mahalanobis distance.

## Syntax <br> $d=\operatorname{mahal}(Y, X)$

Description mahal $(\mathrm{Y}, \mathrm{X})$ computes the M ahalanobis distance of each point (row) of the matrix, $Y$, from the sample in the matrix, $X$.

The number of columns of $Y$ must equal the number of columns in $X$, but the number of rows may differ. The number of rows in X must exceed the number of columns.

TheM ahalanobis distance is a multivariate measure of the separation of a data set from a point in space. It is the criterion minimized in linear discriminant analysis.

## Example The Mahalanobis distance of a matrix, $r$, when applied to itself is a way to find outliers.

```
r = mvnrnd([0 0],[1 0.9;0.9 1],100);
r = [r;10 10];
d = mahal(r,r);
last6 = d(96:101)
last6 =
 1.1036
 2.2353
 2.0219
 0.3876
 1.5571
 52.7381
```

The last element is clearly an outlier.
See Also classify

2-130

## Purpose

## Syntax

## Example

## See Also

Description mean calculates the sample average.

$$
\bar{x}_{\mathrm{j}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}}
$$

For vectors, mean (x) is the mean value of the elements in vector $x$. For matrices, mean $(X)$ is a row vector containing the mean value of each column.
Average or mean value of vectors and matrices.
$m=\operatorname{mean}(X)$

These commands generate five samples of 100 normal random numbers with mean, zero, and standard deviation, one. The sample averages in xbar are much less variable ( $0.00 \pm 0.10$ ).

```
x = normrnd(0,1,100,5);
xbar = mean(x)
xbar =
 0.0727 0.0264 0.0351 0.0424 0.0752
```

median, std, cov, corrcoef, var
mean is a function in the MATLAB Toolbox.

Purpose Median value of vectors and matrices.
Syntax
m = median (X)

Description median $(X)$ calculates the median value, which is the 50th percentile of a sample. The median is a robust estimate of the center of a sample of data, since outliers have little effect on it.

For vectors, median (x) is the median value of the elements in vector x. For matrices, median $(\mathrm{X})$ is a row vector containing the median value of each column. Since median is implemented using sort, it can be costly for large matrices.

## Examples

```
xodd = 1:5;
modd = median(xodd)
modd =
3
meven = median(xeven)
meven =
 2.5000
```

This example shows robustness of the median to outliers.

```
xoutlier = [x 10000];
moutlier = median(xoutlier)
moutlier =
```

3
See Also mean, std, cov, corrcoef median is a function in MATLAB.

## Purpose Maximum likelihood estimation.

```
Syntax phat = mle('dist',data)
[phat,pci] = mle('dist',data)
[phat,pci] = mle('dist',data,alpha)
[phat,pci] = mle('dist',data,alpha,p1)
```

Description phat $=$ mle('dist', data) returns the maximum likelihood estimates (MLEs) for the distribution specified in 'dist' using the sample in the vector, data.
[phat, pci] = mle('dist',data) returns the MLEs and 95\% percent confidence intervals.
[phat, pci] = mle('dist',data, alpha) returns the MLEs and 100(1-alpha) percent confidence intervals given the data and the specified alpha.
[phat,pci] = mle('dist',data, alpha, p1) is used for the binomial distribution only. p 1 is the number of trials.

## Example

```
rv = binornd(20,0.75)
```

$r v=$
16
[p,pci] = mle('binomial',rv, 0.05, 20)
$p=$
0.8000
pci $=$
0.5634
0.9427

See Also betafit, binofit, expfit, gamfit, normfit, poissfit, weibfit

## Purpose Central moment of all orders.

## Syntax

Description

## Example

```
X = randn([6 5])
X =
\begin{tabular}{rrrrr}
1.1650 & 0.0591 & 1.2460 & -1.2704 & -0.0562 \\
0.6268 & 1.7971 & -0.6390 & 0.9846 & 0.5135 \\
0.0751 & 0.2641 & 0.5774 & -0.0449 & 0.3967 \\
0.3516 & 0.8717 & -0.3600 & -0.7989 & 0.7562 \\
-0.6965 & -1.4462 & -0.1356 & -0.7652 & 0.4005 \\
1.6961 & -0.7012 & -1.3493 & 0.8617 & -1.3414
\end{tabular}
m = moment (X,3)
m =
 -0.0282 0.0571 0.1253 0.1460 -0.4486
```

[^1]
## 2-134

## Purpose

## Syntax <br> $r=m v n r n d(m u$, SIGMA, cases $)$

Description

Random matrices from the multivariate normal distribution.
$r=m v n r n d(m u$, SIGMA, cases) returns a matrix of random numbers chosen from the multivariate normal distribution with mean vector, mu, and covariance matrix, SIGMA. cases is the number of rows in $r$.

SIGMA is a symmetric positive definite matrix with size equal to the length of mu.

## Example



See Also
normrnd
Purpose Maximum ignoring NaNs.

```
Syntax m = nanmax(a)
[m,ndx] = nanmax(a)
m = nanmax(a,b) column. ndx.
```


## Example

```
 m = magic(3);
```

    m = magic(3);
    m([1 6 8]) = [NaN NaN NaN]
    m([1 6 8]) = [NaN NaN NaN]
    m =
    m =
            NaN 1 6
            NaN 1 6
            3 5 NaN
            3 5 NaN
            N NaN 2
            N NaN 2
    [nmax,maxidx] = nanmax(m)
    [nmax,maxidx] = nanmax(m)
    nmax =
    nmax =
            4 5 6
            4 5 6
    maxidx =
    maxidx =
            3 2 1
    ```
 3 2 1
```

Description $m=$ nanmax (a) returns the maximum with NaNs treated as missing. For vectors, nanmax (a) is the largest non-NaN element in a. For matrices, nanmax ( $A$ ) is a row vector containing the maximum non-NaN element from each
[ $m, n d x$ ] = nanmax (a) alsoreturns the indices of the maximum values in vector
$m=\operatorname{nanmax}(a, b)$ returns the larger of $a$ or $b$, which must match in size.
See Also
nanmin, nanmean, nanmedian, nanstd, nansum

## 2-136

## Purpose Mean ignoring NaNs

## Syntax

Description
nanmean ( X ) the average treating NaNs as missing values.
F or vectors, nanmean $(x)$ is the mean of thenon-NaN elements of $x$. For matrices, nanmean $(X)$ is a row vector containing the mean of the non-NaN elements in each column.

## Example

```
m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
 m =
 NaN 1 6
 3 NaN
 NaN 2
 nmean = nanmean(m)
 nmean =
 3.5000 3.0000 4.0000
```

See Also
nanmin, nanmax, nanmedian, nanstd, nansum

Purpose Median ignoring NaNs

## Syntax

Description nanmedian $(\mathrm{X})$ the median treating NaNs as missing values.
For vectors, nanmedian ( $x$ ) is the median of the non-NaN elements of $x$. For matrices, nanmedian $(X)$ is a row vector containing the median of the non-NaN elements in each column of $X$.

## Example

See Also
nanmin, nanmax, nanmean, nanstd, nansum

```
m = magic(4);
m([1 6 9 11]) = [NaN NaN NaN NaN]
 m =
 NaN 2 NaN 13
 5 NaN 10 8
 9 7 NaN 12
 4 14 15 1
 nmedian = nanmedian(m)
 nmedian =
 5.0000 7.0000 12.5000 10.0000
```

Purpose

## Syntax <br> Description

## Example

See Also

Minimum ignoring NaNs

```
m = nanmin(a)
[m,ndx] = nanmin(a)
m = nanmin(a,b)
```

$\mathrm{m}=$ nanmin(a) returns the minimum with NaNs treated as missing. F or vectors, nanmin(a) is the smallest non-NaN element in a. F or matrices, nanmin (A) is a row vector containing the minimum non-NaN element from each column.
$[m, n d x]=\operatorname{nanmin}(a)$ alsoreturns the indices of the minimum values in vector ndx.
$m=$ nanmin $(a, b)$ returns the smaller of $a$ or $b$, which must match in size.

```
 m = magic(3);
 m([1 1 6 8]) = [NaN NaN NaN]
 m =
 NaN 1 6
 3 5 NaN
 NaN 2
 [nmin,minidx] = nanmin(m)
 nmin =
 3 1 2
 minidx =
 2 1 3
```

                nanmax, nanmean, nanmedian, nanstd, nansum
    Purpose Standard deviation ignoring NaNs.

## Syntax

Description
nanstd ( X ) the standard deviation treating NaNs as missing values.
F or vectors, nanstd $(x)$ is the standard deviation of the non-NaN elements of $x$. F or matrices, nanstd ( $X$ ) is a row vector containing the standard deviations of the non-NaN elements in each column of $X$.

## Example

See Also
nanmax, nanmin, nanmean, nanmedian, nansum

```
m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
m =
 NaN 1 6
 3 NaN
 NaN 2
nstd = nanstd(m)
nstd =
 0.7071 2.8284 2.8284
```

See Also
nanmax, nanmin, nanmean, nanmedian, nansum

## Purpose Sum ignoring NaNs.

## Syntax

Description nansum ( X ) the sum treating NaNs as missing values.
For vectors, nansum $(x)$ is the sum of the non-NaN elements of $x$. For matrices, nansum ( X ) is a row vector containing the sum of the non-NaN elements in each column of $x$.

```
Example
 m = magic(3);
 m([\begin{array}{lll}{1}&{6}&{8}\end{array}])=[NaN NaN NaN]
 m =
 NaN 1 6
 3 NaN
 NaN 2
 nsum = nansum(m)
 nsum =
 7 6 8
```

See Also nanmax, nanmin, nanmean, nanmedian, nanstd

Purpose Negative binomial cumulative distribution function.

## Syntax

Description

Example

## See Also

Purpose Inverse of the negative binomial cumulative distribution function (cdf).
Syntax

$\mathrm{X}=\operatorname{nbininv}(\mathrm{Y}, \mathrm{R}, \mathrm{P})$

Description nbininv ( $\mathrm{Y}, \mathrm{R}, \mathrm{P}$ ) returns the inverse of the negative binomial cdf with parameters $R$ and $P$. Since the binomial distribution is discrete, nbininv returns the least integer $x$ such that the negative binomial cdf evaluated at $x$, equals or exceeds Y .

The size of X is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.
The negative binomial models consecutive trials each having a constant probability, P , of success. The parameter, R , is the number of successes required before stopping.

## Example

## See Also

How many times would you need toflip a fair coin to have a $99 \%$ probability of having observed 10 heads?

```
flips = nbininv(0.99,10,0.5) + 10
flips =
```

33
N ote that you have to flip at least 10 times to get 10 heads. That is why the second term on the right side of the equal s sign is a 10.
nbincdf, nbinpdf, nbinrnd, nbinstat

## nbinpdf

Purpose Negative binomial probability density function.

Syntax
Description
$Y=\operatorname{nbinpdf}(X, R, P)$
nbinpdf( $X, R, P$ ) returns the negative binomial probability density function with parameters $R$ and $P$ at the values in $X$.

Note that the density function is zero unless x is an integer.
The size of $Y$ is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

The negative binomial pdf is:

$$
y=f(x \mid r, p)=\binom{r+x-1}{x} p^{r} q^{x} I_{(0,1, \ldots)}(x)
$$

The negative binomial models consecutive trials each having a constant probability, $P$, of success. The parameter, $R$, is the number of successes required before stopping.

## Example

## See Also


$x=(0: 10) ;$
$y=n b i n p d f(x, 3,0.5) ;$
plot ( $x, y,{ }^{\prime}+{ }^{\prime}$ )
set (gca, 'Xlim', $[-0.5,10.5])$

[^2]Purpose
Syntax
Description

Example

Random matrices from a negative binomial distribution.

```
RND = nbinrnd(R,P)
RND = nbinrnd(R,P,m)
RND = nbinrnd(R,P,m,n)
```

RND $=$ nbinrnd $(R, P)$ is a matrix of random numbers chosen from a negative binomial distribution with parameters $R$ and $P$. The size of RND is the common size of $R$ and $P$ if both are matrices. If either parameter is a scalar, the size of RND is the size of the other parameter.

RND = nbinrnd ( $\mathrm{R}, \mathrm{P}, \mathrm{m}$ ) generates random numbers with parameters R and P . $m$ is a 1-by-2 vector that contains the row and column dimensions of RND.

RND $=$ nbinrnd ( $R, P, m, n$ ) generates random numbers with parameters $R$ and $P$. The scalars $m$ and $n$ are the row and column dimensions of RND.

The negative binomial models consecutive trials each having a constant probability, P, of success. The parameter, R, is the number of successes required before stopping.

Suppose you want to simulate a process that has a defect probability of 0.01 . How many units might Quality Assurance inspect before finding three defective items?

```
 r = nbinrnd(3,0.01,1,6) + 3
 r =
 496
```

See Also nbincdf, nbininv, nbinpdf, nbinstat

Purpose Mean and variance of the negative binomial distribution.
Syntax $\quad[M, V]=$ nbinstat $(R, P)$
Description $[M, V]=$ nbinstat $(R, P)$ returns the mean and variance of the negative binomial distibution with parameters $R$ and $P$.

For the negative binomial distribution:

- The mean is $\frac{r q}{p}$
- The variance is $\frac{\mathrm{rq}}{\mathrm{p}^{2}}$
where $q=1-p$.
Example

```
p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)
M =
```

| 9.0000 | 18.0000 | 27.0000 | 36.0000 | 45.0000 |
| ---: | ---: | ---: | ---: | ---: |
| 2.3333 | 4.6667 | 7.0000 | 9.3333 | 11.6667 |
| 1.0000 | 2.0000 | 3.0000 | 4.0000 | 5.0000 |
| 0.4286 | 0.8571 | 1.2857 | 1.7143 | 2.1429 |
| 0.1111 | 0.2222 | 0.3333 | 0.4444 | 0.5556 |

V =

| 90.0000 | 180.0000 | 270.0000 | 360.0000 | 450.0000 |
| ---: | ---: | ---: | ---: | ---: |
| 7.7778 | 15.5556 | 23.3333 | 31.1111 | 38.8889 |
| 2.0000 | 4.0000 | 6.0000 | 8.0000 | 10.0000 |
| 0.6122 | 1.2245 | 1.8367 | 2.4490 | 3.0612 |
| 0.1235 | 0.2469 | 0.3704 | 0.4938 | 0.6173 |

See Also nbincdf, nbininv, nbinpdf, nbinrnd

2-146

Purpose
Noncentral F cumulative distribution function (cdf).

## Syntax <br> $P=\operatorname{ncfcdf}(X, N U 1, N U 2, D E L T A)$

Description

Example

## References

$P=n c f c d f(X, N U 1, N U 2, D E L T A)$ returns the noncentral $F$ cdf with numerator degrees of freedom (df), NU1, denominator df, NU2, and positive noncentrality parameter, DELTA, at the values in $X$.

The size of $P$ is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

The noncentral F cdf is:

$$
F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) \|\left(\left.\frac{v_{1} \cdot x}{v_{2}+v_{1} \cdot x} \right\rvert\, \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
$$

where $\mathrm{I}(\mathrm{x} \mid \mathrm{a}, \mathrm{b})$ is the incomplete beta function with parameters a and b .
Compare the noncentral F cdf with $\delta=10$ to the F cdf with the same number of numerator and denominator degrees of freedom ( 5 and 20 respectively).

```
x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x, p,'--', x, p1,'-')
```



J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200.
Purpose Inverse of the noncentral F cumulative distribution function (cdf).
SyntaxDescription
Example
References
See Also icdf, ncfcdf, ncfpdf, ncfrnd, ncfstat

See Also icdf, ncfcdf, ncfpdf, ncfrnd, ncfstat
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 102-105.
J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200.
Suppose the truth is that the first variance is twice as big as the second variance. How likely is it that you would detect this difference?
0.1297
One hypothesis test for comparing two sample variances is to take their ratio and compare it to an $F$ distribution. If the numerator and denominator degrees of freedom are 5 and 20 respectively then you reject the hypothesis that the first variance is equal to the second variance if their ratio is less than below:
2.7109
The size of $x$ is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

```
critical = finv(0.95,5,20)
```

critical = finv(0.95,5,20)
critical =

```
critical =
```

```
prob = 1 - ncfcdf(critical,5,20,2)
```

prob = 1 - ncfcdf(critical,5,20,2)
prob =

```
prob =
```

Purpose
Syntax
Description

## Example

See Also

| Purpose | Random matrices from the noncentral F distribution. |
| :---: | :---: |
| Syntax | $\begin{aligned} & R=n c f r n d(N U 1, N U 2, D E L T A) \\ & R=n c f r n d(N U 1, N U 2, D E L T A, m) \\ & R=n c f r n d(N U 1, N U 2, D E L T A, m, n) \end{aligned}$ |
| Description | $R=n c f r n d(N U 1, N U 2, D E L T A)$ returns a matrix of random numbers chosen from the noncentral F distribution with parameters NU1, NU2 and DELTA. The size of $R$ is the common size of NU1, NU2 and DELTA if all are matrices. If any parameter is a scalar, the size of $R$ is the size of the other parameters. <br> R = ncfrnd(NU1,NU2,DELTA, m) returns a matrix of random numbers with parameters NU1, NU2 and DELTA. $m$ is a 1-by-2 vector that contains the row and column dimensions of R . <br> R = ncfrnd(NU1,NU2,DELTA, m, n) generates random numbers with parameters NU1, NU2 and DELTA. The scalars $m$ and $n$ are the row and column dimensions of R. |
| Example | Compute 6 random numbers from a noncentral $F$ distribution with 10 numerator degrees of freedom, 100 denominator degrees of freedom and a noncentrality parameter, $\delta$, of 4.0. Compare this to the $F$ distribution with the same degrees of freedom. $\begin{aligned} & r=\operatorname{ncfrnd}(10,100,4,1,6) \\ & r= \end{aligned}$ |
|  | ```2.5995 0.8824 0.8220 1.4485 1.4415 1.4864 r1 = frnd(10,100,1,6) r1 =``` |
|  | $\begin{array}{llllll}0.9826 & 0.5911 & 1.0967 & 0.9681 & 2.0096 & 0.6598\end{array}$ |
| References | J ohnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200. |
| See Also | ncfedf, ncfinv, ncfpdf, ncfstat |

## 2-150

See Also ncfcdf, ncfinv, ncfpdf, ncfrnd

## Purpose

## Syntax

Description

## Example

## References

Mean and variance of the noncentral $F$ distribution.
[M,V] = ncfstat(NU1,NU2, DELTA)
[M,V] = ncfstat(NU1,NU2, DELTA) returns the mean and variance of the noncentral F pdf with NU1 and NU2 degrees of freedom and noncentrality parameter, DELTA.

- The mean is

$$
\frac{v_{2}\left(\delta+v_{1}\right)}{v_{1}\left(v_{2}-2\right)}
$$

where $v_{2}>2$.

- The variance is

$$
2\left(\frac{v_{2}}{v_{1}}\right)^{2}\left[\frac{\left(\delta+v_{1}\right)^{2}+\left(2 \delta+v_{1}\right)\left(v_{2}-2\right)}{\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}\right]
$$

where $v_{2}>4$.

$$
\begin{aligned}
& {[m, v]=\text { ncfstat }(10,100,4)} \\
& m= \\
& \\
& 1.4286 \\
& v=
\end{aligned}
$$

3.9200

Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 73-74.

J ohnson, N., and S. K otz, Distributions in Statistics: Continuous U ni variate Distributions-2, J ohn Wiley and Sons, 1970. pp. 189-200.

Purpose Noncentral T cumulative distribution function.

## Syntax <br> $\mathrm{P}=\operatorname{nctcdf}(\mathrm{X}, \mathrm{Nu}, \mathrm{DELTA})$

Description

Example
$\begin{array}{ll}\text { References } & \text { Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second } \\ & \text { Edition, J ohn Wiley and Sons, 1993. p. 147-148. } \\ & \text { J ohnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate } \\ & \text { Distributions-2, J ohn Wiley and Sons, 1970. pp. 201-219. }\end{array}$
See Also
cdf, nctcdf, nctinv, nctpdf, nctrnd, nctstat

2-152

## Purpose

## Syntax

Description

## Example

References

See Also icdf, nctcdf, nctpdf, nctrnd, nctstat

## nctpdf

Purpose $\quad$ Noncentral $T$ probability density function (pdf).
Syntax
$Y=\operatorname{nctpdf}(X, V, D E L T A)$

Description

## Example

References

See Also
See
$Y=\operatorname{nctpdf}(X, V, D E L T A)$ returnsthe noncentral $T$ pdf with $V$ degrees of freedom and noncentrality parameter, DELTA, at the values in $X$.

The size of $Y$ is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Compare the noncentral T pdf with DELTA $=1$ to the $T$ pdf with the same number of degrees of freedom (10).

```
x = (-5:0.1:5)';
p1 = nctpdf(x,10,1);
p = tpdf(x,10);
plot(x,p,'--',x,p1,'-')
```



Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 147-148.
J ohnson, N., and S. K otz, Distributions in Statistics: Conti nuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 201-219.
nctcdf, nctinv, nctrnd, nctstat, pdf

## 2-154

## Purpose Random matrices from noncentral T distribution.

Syntax $\quad$| $R$ | $=\operatorname{nctrnd}(V$, DELTA $)$ |
| ---: | :--- |
| $R$ | $=\operatorname{nctrnd}(V$, DELTA, $m)$ |
| $R$ | $=n c t r n d(V, D E L T A, m, n)$ |

## Description

## Example $\quad \operatorname{nctrnd}(10,1,5,1)$

References

See Also
$R=$ nctrnd $(V, D E L T A)$ returns a matrix of random numbers chosen from the noncentral $T$ distribution with parameters $V$ and DELTA. The size of $R$ is the common size of V and DELTA if both arematrices. If either parameter is a scalar, the size of $R$ is the size of the other parameter.
$R=n c t r n d(V, D E L T A, m)$ returns a matrix of random numbers with parameters V and DELTA. m is a 1-by- 2 vector that contains the row and column dimensions of $R$.
$R=n c t r n d(V, D E L T A, m, n)$ generates random numbers with parameters $V$ and DELTA. The scalars $m$ and $n$ are the row and column dimensions of R .

```
ans \(=\)
1.6576
1.0617
1.4491
0.2930
3.6297
nctrnd(10,1,5,1)
 ans =
\[
3.6297
\]
```

```
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 147-148.
J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Uni variate Distributions-2, J ohn Wiley and Sons, 1970. pp. 201-219.
```

nctcdf, nctinv, nctpdf, nctstat

Purpose

## Syntax

Description

## Example

References

See Also

Mean and variance for the noncentral t distribution.
[M, V] = nctstat(NU,DELTA)
$[M, V]=n c t s t a t(N U, D E L T A)$ returns the mean and variance of the noncentral $t$ pdf with NU degrees of freedom and noncentrality parameter, DELTA.

- The mean is $\frac{\delta(v / 2)^{1 / 2} \Gamma((v-1) / 2)}{\Gamma(v / 2)}$
where $v>1$.
- The variance is $\frac{v}{(v-2)}\left(1+\delta^{2}\right)-\frac{v}{2} \delta^{2}\left[\frac{\Gamma((v-1) / 2)}{\Gamma(v / 2)}\right]^{2}$
where $v>2$.

$$
[m, v]=\operatorname{nctstat}(10,1)
$$

m =
1.0837
v =
1.3255

Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 147-148.
J ohnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 201-219.
nctcdf, nctinv, nctpdf, nctrnd

Purpose

## Syntax

Description

Noncentral chi-square cumulative distribution function (cdf).
$P=n c x 2 c d f(X, V, D E L T A)$
ncx2cdf( $X, V, D E L T A)$ returns the noncentral chi-square cdf with $V$ degrees of freedom and positive noncentrality parameter, DELTA, at the values in X.

The size of $P$ is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is:

$$
F(x \mid v, \delta)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
$$

## Example

## References

See Also

x 1 (0:0.1:10)
p1 $=\operatorname{ncx2cdf}(x, 4,2)$;
$p=\operatorname{chi2cdf}(x, 4)$;
plot (x, p,'--', x, p1, '-')

J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148.
cdf, ncx2inv, ncx2pdf, ncx2rnd, ncx2stat

Purpose Inverse of the noncentral chi-square cdf.
Syntax $\quad X=\operatorname{ncx} 2 \operatorname{inv}(P, V, D E L T A)$

Description $\quad X=n \operatorname{cx} 2 \operatorname{inv}(P, V, D E L T A)$ returns the inverse of the noncentral chi-square cdf with parameters $V$ and DELTA, at the probabilities in $P$.
The size of $x$ is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Algorithm
ncx2inv uses Newton's method to converge to the solution.

## Example

References

See Also ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat

```
 ncx2inv([0.01 0.05 0.1],4,2)
 ans =
 0.4858 1.1498 1.7066
``` Edition, J ohn Wiley and Sons, 1993. p. 50-52. Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148.

Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second

J ohnson, N., and S. K otz, Distributions in Statistics: Conti nuous Univariate

Purpose

\section*{Syntax}

Description

\section*{Example}

\section*{References}

See Also

Noncentral chi-square probability density function (pdf).
```

Y = ncx2pdf(X,V,DELTA)

```
\(Y=n c x 2 p d f(X, V, D E L T A)\) returns the noncentral chi-square pdf with v degrees of freedom and positive noncentrality parameter, DELTA, at the values in \(X\).

The size of \(Y\) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

As the noncentrality parameter, \(\delta\), increases, the distribution flattens as in the plot.
```

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'--',x,p1,'-')

```


J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148.
ncx2cdf, ncx2inv, ncx2rnd, ncx2stat
\begin{tabular}{ll} 
Purpose & Random matrices from the noncentral chi-square distribution. \\
Syntax & \(R=n c x 2 r n d(V\), DELTA \()\) \\
& \(R=n c x 2 r n d(V\), DELTA, \(m)\) \\
& \(R=n c x 2 r n d(V\), DELTA, \(m, n)\)
\end{tabular}

Description \(\quad R=n c x 2 r n d(V, D E L T A)\) returns a matrix of random numbers chosen from the non-central chisquare distribution with parameters \(V\) and DELTA. The size of \(R\) is the common size of \(v\) and DELTA if both are matrices. If either parameter is a scalar, the size of \(R\) is the size of the other parameter.
\(R=n c x 2 r n d(V, D E L T A, m)\) returns a matrix of random numbers with parameters \(V\) and DELTA. \(m\) is a 1-by-2 vector that contains the row and column dimensions of \(R\).
\(R=n c x 2 r n d(V, D E L T A, m, n)\) generates random numbers with parameters \(V\) and DELTA. The scalars \(m\) and \(n\) are the row and column dimensions of \(R\).
\begin{tabular}{llrr} 
Example \(\quad\) ncx2rnd \((4,2,6,3)\) \\
ans \(=\) \\
& & \\
& 6.8552 & 5.9650 & 11.2961 \\
5.2631 & 4.2640 & 5.9495 \\
9.1939 & 6.7162 & 3.8315 \\
10.3100 & 4.4828 & 7.1653 \\
2.1142 & 1.9826 & 4.6400 \\
3.8852 & 5.3999 & 0.9282
\end{tabular}
References

Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
 Edition, J ohn Wiley and Sons, 1993. p. 50-52.

J ohnson, N., and S. K otz, Distributions in Statistics: Continuous Univariate
 Distributions-2, J ohn Wiley and Sons, 1970. pp. 130-148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2stat

2-160

Purpose

\section*{Syntax}

Description

\section*{Example}
v =
16

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd

\section*{nlinfit}

Purpose Nonlinear least-squares data fitting by the Gauss-N ewton method.
Syntax [beta, \(r, J]=n l i n f i t(X, y, ' m o d e l ', b e t a 0)\)
Description beta = nlinfit( \(\mathrm{X}, \mathrm{y}\), 'model', beta0) returns the coefficients of the nonlinear function described in 'model'.
'model' is a user-supplied function having theform: \(\hat{y}=f(\beta, X)\). It returns the predicted values of y given initial parameter estimates, \(\beta\), and the independent variable, X .

The matrix, \(x\), has one column per independent variable. The response, \(y\), is a column vector with the same number of rows as \(X\).
[beta, \(r, \mathrm{~J}]=\) nlinfit( \(\mathrm{X}, \mathrm{y}\), 'model', beta0) returns the fitted coefficients, beta, the residuals, \(r\), and the J acobian, \(J\), for use with nlintool to produce error estimates on predictions.

\section*{Example}
```

load reaction
betafit = nlinfit(reactants,rate,'hougen',beta)
betafit =
1.2526
0.0628
0.0400
0.1124
1.1914

```

See Also nlintool

Purpose
Syntax
Description

\section*{Example}

See Also

Fits a nonlinear equation to data and displays an interactive graph.
```

nlintool(x,y,'model',betaO)
nlintool(x,y,'model',beta0,alpha)
nlintool(x,y,'model',beta0,alpha,'xname','yname')

```
nlintool(x,y,'model', beta0) is a prediction plot that provides a nonlinear curve fit to ( \(\mathrm{x}, \mathrm{y}\) ) data. It plots a \(95 \%\) global confidence interval for predictions as two red curves. beta0 is a vector containing initial guesses for the parameters.
nlintool(x, y,'model', beta0, alpha) plots a 100(1-alpha) percent confidence interval for predictions.
nlintool displays a "vector" of plots, one for each column of the matrix of inputs, \(x\). The response variable, \(y\), is a column vector that matches the number of rows in \(x\).

The default value for alpha is 0.05 , which produces \(95 \%\) confidence intervals.
nlintool(x,y,'model', beta0, alpha, 'xname', 'yname') labels the plot using the string matrix, ' xname' for the \(X\) variables and the string 'yname' for the \(Y\) variable.

You can drag the dotted white reference line and watch the predicted values update simultaneously. Alternatively, you can get a specific prediction by typing the value for \(X\) into an editable text field. Use the pop-up menu labeled Export to move specified variables to the base workspace.

See the section "N onlinear Regression Models" in Chapter 1.
nlinfit,rstool

\section*{nlparci}

Purpose Confidence intervals on estimates of parameters in nonlinear models.
Syntax \(\quad\) ci \(=\) nlparci(beta, \(r, J)\)
Description nlparci(beta, \(r, J\) ) returns the \(95 \%\) confidence interval \(c i\) on the nonlinear least squares parameter estimates beta, given the residuals, \(r\), and the \(J\) acobian matrix, J, at the solution. The confidence interval cal culation is valid for systems where the number of rows of \(J\) exceeds the length of beta.
nlparci uses the outputs of nlinfit for its inputs.

\section*{Example}

Continuing the example from nlinfit:
```

load reaction
[beta,resids,J] = nlinfit(reactants,rate,'hougen',beta);
ci = nlparci(beta,resids,J)
ci =
-1.0798 3.3445
-0.0524 0.1689
-0.0437 0.1145
-0.0891 0.2941
-1.1719 3.7321

```

See Also nlinfit, nlintool, nlpredci

2-164

Purpose

\section*{Syntax \\ Description}

Confidence intervals on predictions of nonlinear models.
```

ypred = nlpredci('model',inputs,beta,r,J)
[ypred,delta] = nlpredci('model',inputs,beta,r,J)

```
ypred \(=\) nlpredci('model', inputs, beta, \(r, J\) ) returns the predicted responses, ypred, given the fitted parameters, beta, residuals, \(r\), and the \(J\) acobian matrix, \(J\). inputs is a matrix of values of the independent variables in the nonlinear function.
[ypred,delta] = nlpredci('model',inputs, beta, r, J) also returns 95\% confidence intervals, delta, on the nonlinear least squares predictions, pred. The confidence interval calculation is valid for systems where the length of \(r\) exceeds the length of beta and \(J\) is of full column rank.
nlpredci uses the outputs of nlinfit for its inputs.

\section*{Example Continuing the example from nlinfit:}
```

load reaction
[beta,resids,J]=nlinfit(reactants,rate,'hougen',beta);
ci = nlpredci('hougen',reactants,beta,resids,J)
ci =
8.2937
3.8584
4 . 7 9 5 0
-0.0725
2.5687
14.2227
2.4393
3.9360
12.9440
8.2670
-0.1437
11.3484
3.3145

```

\section*{See Also}

Purpose Normal cumulative distribution function (cdf).

\section*{Syntax}

Description

\section*{Examples}

What is the probability that an observation from a standard normal distribution will fall on the interval [-11]?
```

p = normcdf([-1 1]);
p(2) - p(1)
ans =
0.6827

```

M ore generally, about 68\% of the observations from a normal distribution fall within one standard deviation, \(\sigma\), of the mean, \(\mu\).

Purpose

\section*{Syntax \\ Description}

Example

\section*{See Also}

Parameter estimates and confidence intervals for normal data.
```

[muhat,sigmahat,muci,sigmaci] = normfit(X)
[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)

```
[muhat, sigmahat, muci, sigmaci] = normfit(X) returns estimates, muhat and sigmahat, of the parameters, \(\mu\) and \(\sigma\), of the normal distribution given the matrix of data, X . muci and sigmaci are \(95 \%\) confidence intervals. muci and sigmaci havetwo rows and as many columns as the data matrix, X . The top row is the lower bound of the confidence interval and the bottom row is the upper bound.
[muhat, sigmahat,muci,sigmaci] = normfit(X,alpha) gives estimates and 100(1-alpha) percent confidence intervals. F or example, alpha \(=0.01\) gives 99\% confidence intervals.

In this example the data is a two-column random normal matrix. Both columns have \(\mu=10\) and \(\sigma=2\). Note that the confidence intervals below contain the "true values."
```

r = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(r)
mu =
10.1455 10.0527
sigma =
1.9072 2.1256
muci =
9.7652 9.6288
10.5258 10.4766
sigmaci =
1.6745 1.8663
2.2155 2.4693

```
betafit, binofit, expfit, gamfit, poissfit, unifit, weibfit

\section*{Purpose Inverse of the normal cumulative distribution function (cdf).}

Syntax \(\quad X=\operatorname{norminv}(P, M U, S I G M A)\)
Description norminv (P,MU,SIGMA) computes the inverse of the normal cdf with parameters MU and SIGMA at the values in P. The arguments P, MU, and SIGMA must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameter SIGMA must be positive and P must lie on [01].
We define the normal inverse function in terms of the normal cdf.
\[
\begin{aligned}
& x=F^{-1}(p \mid \mu, \sigma)=\{x: F(x \mid \mu, \sigma)=p\} \\
& \text { where } p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^{2}}{2 \sigma^{2}}} d t
\end{aligned}
\]

Theresult, x , is the solution of the integral equation above with the parameters \(\mu\) and \(\sigma\) where you supply the desired probability, p .

Examples Find an interval that contains \(95 \%\) of the values from a standard normal distribution.
```

x = norminv([0.025 0.975],0,1)
x =
-1.9600 1.9600

```

N ote the interval x is not the only such interval, but it is the shortest.
```

xl = norminv([0.01 0.96],0,1)
xl =

```
    -2.3263 1.7507

The interval xl also contains \(95 \%\) of the probability, but it is longer than x .

\section*{Purpose Normal probability density function (pdf).}

\section*{Syntax \\ Y = normpdf(X,MU,SIGMA)}

Description normpdf(X,MU,SIGMA) computes the normal pdf with parameters mu and SIGMA at the values in \(X\). The arguments \(X, M U\) and SIGMA must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameter SIGMA must be positive.
The normal pdf is:
\[
y=f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
\]

The likelihood function is the pdf viewed as a function of the parameters. Maximum likelihood estimators (MLEs) are the values of the parameters that maximize the likelihood function for a fixed value of \(x\).

The standard normal distribution has \(\mu=0\) and \(\sigma=1\).
If x is standard normal, then \(\mathrm{x} \sigma+\mu\) is also normal with mean \(\mu\) and standard deviation \(\sigma\). Conversely, if \(y\) is normal with mean \(\mu\) and standard deviation \(\sigma\), then \(x=(y-\mu) / \sigma\) is standard normal.

\section*{Examples}
```

mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)
MLE =
1.5000

```

Purpose Normal probability plot for graphical normality testing.

\section*{Syntax normplot (X) \\ h = normplot (X)}

Description normplot ( X ) displays a normal probability plot of the data in X . For matrix X , normplot displays a line for each column of \(X\).

The plot has the sample data displayed with the plot symbol ' + '. Superimposed on the plot is a line joining the first and third quartiles of each column of \(x\). (A robust linear fit of the sample order statistics.) This line is extrapolated out to the ends of the sample to hel p evaluate the linearity of the data.

If the data does come from a normal distribution, the plot will appear linear. Other probability density functions will introduce curvature in the plot.
\(h=n o r m p l o t(X)\) returns a handle to the plotted lines.

\section*{Examples}

Generate a normal sample and a normal probability plot of the data.


The plot is linear, indicating that you can model the sample by a normal distribution.

\section*{Purpose \\ Random numbers from the normal distribution.}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{normrnd}(M U\), SIGMA \()\) \\
\(R\) & \(=\operatorname{normrnd}(M U\), SIGMA,\(m)\) \\
\(R\) & \(=\operatorname{normrnd}(M U\), SIGMA \(, m, n)\)
\end{tabular}

Description

\section*{Examples}
```

n1 = normrnd(1:6,1./(1:6))
n1 =
2.1650 2.3134 3.0250 4.0879 4.8607 6.2827
n2 = normrnd(0,1,[1 5])
n2 =
0.0591 1.7971 0.2641 0.8717 -1.4462
n3 = normrnd([1 2 3;4 5 6],0.1,2,3)
n3 =
$0.9299 \quad 1.9361 \quad 2.9640$
4.1246 5.0577 5.9864

```

Purpose

\section*{Syntax}

Description

\section*{Example}

See Also

Plot normal density between specification limits.
\[
\begin{aligned}
& p=\text { normspec (specs,mu, sigma) } \\
& {[p, h]=\text { normspec }(\text { specs }, \text { mu }, \text { sigma })}
\end{aligned}
\]
p = normspec (specs, mu, sigma) plots the normal density between a lower and upper limit defined by the two elements of the vector, specs. mu and sigma are the parameters of the plotted normal distribution.
[ \(p, h\) ] = normspec(specs, mu, sigma) returns the probability, \(p\), of a sample falling between the lower and upper limits. h is a handle to the line objects.
If specs(1) is -Inf, there is no lower limit, and similarly if specs (2) = Inf, there is no upper limit.

Suppose a cereal manufacturer produces 10 ounce boxes of corn flakes. Variability in the process of filling each box with flakes causes a 1.25 ounce standard deviation in the true weight of the cereal in each box. The average box of cereal has 11.5 ounces of flakes. What percentage of boxes will haveless than 10 ounces?
```

normspec([10 Inf],11.5,1.25)

```

Probability Between Limits is 0.8849


\footnotetext{
capaplot, disttool, histfit, normpdf
}

Purpose Mean and variance for the normal distribution.

\section*{Syntax \\ [M,V] = normstat(MU,SIGMA)}

Description F or the normal distribution:
- The mean is \(\mu\).
- The variance is \(\sigma^{2}\).

\section*{Examples}

\section*{Purpose Pareto charts for Statistical Process Control.}
```

Syntax
pareto(y)
pareto(y,'names')
h = pareto(...)

```

Description pareto ( y , names) displays a Pareto chart where the values in the vector y are drawn as bars in descending order. Each bar is labeled with the associated value in the string matrix names. pareto (y) labels each bar with the index of the corresponding element in \(y\).

The line above the bars shows the cumulative percentage.
pareto (y, 'names ') labels each bar with therow of the string matrix, ' names ', that corresponds to the plotted element of \(y\).
h = pareto(...) returns a combination of patch and line handles.
Example Create a Pareto chart from data measuring the number of manufactured parts rejected for various types of defects.
```

defects = ['pits ';'cracks';'holes ';'dents '];
quantity = [5 3 19 25];
pareto(quantity,defects)

```


\section*{See Also}
bar, capaplot, ewmaplot, hist, histfit, schart, xbarplot

\section*{Purpose}

Principal Components Analysis (PCA) using the covariance matrix.

\author{
Syntax \\ Description
}
\(\mathrm{pc}=\mathrm{pcacov}(\mathrm{X})\)
[pc,latent, explained] = pcacov(X)
[pc, latent, explained] = pcacov (X) takes the covariance matrix \(X\) and returns the principal components in pc , the eigenvalues of the covariance matrix of \(x\) in latent, and the percentage of the total variance in the observations explained by each eigenvector in explained.
```

load hald
covx = cov(ingredients);
[pc,variances,explained] = pcacov(covx)
pc =

0.0678	-0.6460	0.5673	-0.5062
0.6785	-0.0200	-0.5440	-0.4933
-0.0290	0.7553	0.4036	-0.5156
-0.7309	-0.1085	-0.4684	-0.4844

 variances =
    ```
        517.7969
            67.4964
            12.4054
            0.2372
    explained =
        86.5974
        11.2882
        2.0747
        0.0397

See Also

J ackson, J. E., A User's Guideto Principal Components, J ohn Wiley and Sons, Inc. 1991. pp. 1-25.
barttest, pcares, princomp

\section*{Purpose \\ Residuals from a Principal Components Analysis.}
```

Syntax residuals = pcares(X,ndim)

```

Description pcares(X,ndim) returns the residuals obtained by retaining ndim principal components of \(X\). Note that ndim is a scalar and must be less than the number of columns in \(X\). Use the data matrix, not the covariance matrix, with this function.

\section*{Example}

Reference

See Also barttest, pcacov, princomp

2-176

Purpose

\section*{Syntax}

Description

Probability density function (pdf) for a specified distribution.
\(Y=\operatorname{pdf}(\) 'name' \(, \mathrm{X}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3)\)
pdf('name', \(\mathrm{X}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3\) ) returns a matrix of densities. ' name' is a string containing the name of the distribution. X is a matrix of values, and A1, A2, and A3 are matrices of distribution parameters. Depending on the distribution, some of the parameters may not be necessary.

The arguments \(\mathrm{X}, \mathrm{A} 1, \mathrm{~A} 2\), and A3 must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.
pdf is a utility routine allowing access to all the pdfs in the Statistics Tool box using the name of the distribution as a parameter.

\section*{Examples}
```

p = pdf('Normal',-2:2,0,1)
p =
0.0540 0.2420 0.3989 0.2420 0.0540
p = pdf('Poisson',0:4,1:5)
p =

| 0.3679 | 0.2707 | 0.2240 | 0.1954 | 0.1755 |
| :--- | :--- | :--- | :--- | :--- |

```

Purpose Pairwise distance between observations.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Syntax} & \(Y=\operatorname{pdist}(\mathrm{X})\) \\
\hline & \(Y\) = pdist(X,'metric') \\
\hline & \(Y=\) pdist( X, 'minkowski', p ) \\
\hline
\end{tabular}

Description \(\quad Y=\operatorname{pdist}(X)\) computes the E udidean distance between pairs of objects in the data matrix \(X\). X is an m by n matrix, treated as m vectors of size n . For a dataset made up of \(m\) objects, there are \((m-1) \cdot m / 2\) pairs.
The output, Y , is a vector of length \((\mathrm{m}-1) \cdot \mathrm{m} / 2\), containing the distance information. The distances are arranged in the order (1,2), ( 1,3 ),..., ( \(1, \mathrm{~m}\) ), \((2,3), \ldots,(2, m), \ldots, \ldots,(m-1, m)\). Y is also commonly known as a similarity matrix or dissimilarity matrix.

To save space and computation time, Y is formatted as a vector. However, you can convert this vector into a square matrix using the squareform function so that element ( \(i, j\) ) in the matrix corresponds to the distance between objects \(i\) and j in the original dataset.
\(Y=\operatorname{pdist}(X\), 'metric') computes the distance between objects in the data matrix, X , using the method specified by 'metric'. 'metric' can be any of the following character strings that identify ways to compute the distance.
\begin{tabular}{ll}
\hline String & Meaning \\
\hline 'Euclid' & Euclidean distance (default) \\
\hline 'SEuclid' & Standardized Euclidean distance \\
\hline 'Mahal' & Mahalanobis distance \\
\hline 'CityBlock' & City Block metric \\
\hline 'Minkowski' & Minkowski metric \\
\hline
\end{tabular}
\(\mathrm{Y}=\) pdist(X,'minkowski', p ) computes the distance between objects in the data matrix, \(x\), using the Minkowski metric. \(p\) is the exponent used in the Minkowski computation which, by default, is 2.

Mathematical Definitions of Methods. Given an m-by-n data matrix \(x\), which is treated as \(m\) (1-by-n) row vectors \(x_{1}, x_{2}, \ldots, x_{m}\), the various distances between the vector \(x_{r}\) and \(x_{s}\) are defined as follows:
- Euclidean distance:
\[
d_{r s}^{2}=\left(x_{r}-x_{s}\right)\left(x_{r}-x_{s}\right)^{\prime}
\]
- Standardized Euclidean distance:
\(d_{r s}^{2}=\left(x_{r}-x_{s}\right) D^{-1}\left(x_{r}-x_{s}\right)^{\prime}\)
where \(D\) is the diagonal matrix with diagonal elements given by \(v_{j}^{2}\), which denotes the variance of the variable \(X_{j}\) over the \(m\) objects.
- Mahalanobis distance:
\(d_{r s}^{2}=\left(x_{r}-x_{s}\right)^{\prime} V^{-1}\left(x_{r}-x_{s}\right)\)
where V is the sample covariance matrix.
- City Block metric:
\[
d_{r s}=\sum_{j=1}^{n}\left|x_{r j}-x_{s j}\right|
\]
- Minkowski metric:
\(d_{r s}=\left\{\sum_{j=1}^{n}\left|x_{r j}-x_{s j}\right|^{p}\right\} 1 / p\)
Notice that when \(\mathrm{p}=1\), it is the City Block case, and when \(\mathrm{p}=2\), it is the Euclidean case.
```

Examples
$X=[12 ; 12 ; 22 ; 31]$
$X=$
12
13
22
31
Y = pdist(X,'mahal')
Y =
$\begin{array}{llllll}2.3452 & 2.0000 & 2.3452 & 1.2247 & 2.4495 & 1.2247\end{array}$
$Y=\operatorname{pdist}(X)$
$Y=$
$\begin{array}{llllll}1.0000 & 1.0000 & 2.2361 & 1.4142 & 2.8284 & 1.4142\end{array}$
squareform(Y)
ans =

| 0 | 1.0000 | 1.0000 | 2.2361 |
| ---: | ---: | ---: | ---: |
| 1.0000 | 0 | 1.4142 | 2.8284 |
| 1.0000 | 1.4142 | 0 | 1.4142 |
| 2.2361 | 2.8284 | 1.4142 | 0 |

```

\section*{See Also}
cluster, clusterdata, cophenet, dendrogram, inconsistent, linkage, squareform

\section*{Purpose All permutations.}

\section*{Syntax \\ P = perms(v)}

Description \(\quad P=\operatorname{perms}(v)\), where \(v\) is a row vector of length \(n\), creates a matrix whose rows consist of all possible permutations of the \(n\) elements of \(v\). The matrix, P , contains n ! rows and n columns.
perms is only practical when n is less than 8 or 9 .

\section*{Example}
ans =
\begin{tabular}{lll}
6 & 4 & 2 \\
4 & 6 & 2 \\
6 & 2 & 4 \\
2 & 6 & 4 \\
4 & 2 & 6 \\
2 & 4 & 6
\end{tabular}

Purpose Poisson cumulative distribution function (cdf).

\section*{Syntax \(\quad P=\operatorname{poisscdf}(X, L A M B D A)\)}

Description poisscdf( \(X\), LAMBDA) computes the Poisson cdf with parameter settings LAMBDA at the values in \(x\). The arguments \(x\) and LAMBDA must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument. The parameter, LAMBDA, is positive.

The Poisson cdf is:
\[
p=F(x \mid \lambda)=e^{-\lambda} \sum_{i=0}^{f l o o r(x)} \frac{\lambda^{i}}{i!}
\]

\section*{Examples}

F or example, consider a Quality Assurance department that performs random tests of individual hard disks. Their policy is to shut down the manufacturing process if an inspector finds more than four bad sectors on a disk. What is the probability of shutting down the process if the mean number of bad sectors ( \(\lambda\) ) is two?
```

probability = 1 - poisscdf(4,2)
probability =

```
    0.0527

About 5\% of the time, a normally functioning manufacturing process will produce more than four flaws on a hard disk.

Suppose the average number of flaws ( \(\lambda\) ) increases to four. What is the probability of finding fewer than five flaws on a hard drive?
```

probability = poisscdf(4,4)
probability =
0.6288

```

This means that this faulty manufacturing process continues to operate after this first inspection almost \(63 \%\) of the time.

Purpose
Parameter estimates and confidence intervals for Poisson data.
```

lambdahat = poissfit(X)
[lambdahat,lambdaci] = poissfit(X)
[lambdahat,lambdaci] = poissfit(X,alpha)

```

Description poissfit (X) returns the maximum likelihood estimate (MLE) of the parameter of the Poisson distribution, \(\lambda\), given the data \(X\).
[lambdahat, lambdaci] = poissfit(X) also gives 95\% confidence intervals in lamdaci.
[lambdahat,lambdaci] = poissfit(X,alpha) gives 100(1-alpha) percent confidence intervals. For example alpha \(=0.001\) yields \(99.9 \%\) confidence intervals.

The sample average is the MLE of \(\lambda\).
\[
\lambda=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\]

\section*{Example}

\section*{See Also}
```

r = poissrnd(5,10,2);
[l,lci] = poissfit(r)
l =
7.4000 6.3000
lci =
5.8000 4.8000
9.1000 7.9000

```
betafit, binofit, expfit, gamfit, poissfit, unifit, weibfit

Purpose

\section*{Syntax}

Description

Examples

I nverse of the Poisson cumulative distribution function (cdf).
X = poissinv (P,LAMBDA)
poissinv ( \(P\), LAMBDA) returns the smallest value, \(X\), such that the Poisson cdf evaluated at \(X\) equals or exceeds \(P\).

If the average number of defects \((\lambda)\) is two, what is the 95th percentile of the number of defects?
poissinv(0.95,2)
ans \(=\)

5
What is the median number of defects?
```

median_defects = poissinv(0.50,2)
median_defects =

```
    2

Purpose

\section*{Syntax}

Description

Examples

Poisson probability density function (pdf).
\(Y=\) poisspdf( X, LAMBDA \()\)
poisspdf( \(X\), LAMBDA) computes the Poisson pdf with parameter settings LAMBDA at the values in \(X\). The arguments \(X\) and LAMBDA must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument.

The parameter, \(\lambda\), must be positive.
The Poisson pdf is:
\[
y=f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda} I_{(0,1, \ldots)}(x)
\]
\(x\) can be any non-negative integer. The density function is zero unless \(x\) is an integer.

A computer hard disk manufacturer has observed that flaws occur randomly in the manufacturing process at the average rate of two flaws in a 4 Gb hard disk and has found this rate to be acceptable. What is the probability that a disk will be manufactured with no defects?

In this problem, \(\lambda=2\) and \(x=0\).
\[
\begin{aligned}
& p=\operatorname{poisspdf}(0,2) \\
& p=
\end{aligned}
\]
\[
0.1353
\]

Purpose Random numbers from the Poisson distribution.
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\) poissrnd \((\) LAMBDA \()\) \\
\(R\) & \(=\) poissrnd \((\) LAMBDA,\(m)\) \\
\(R\) & \(=\) poissrnd \((\) LAMBDA \(, m, n)\)
\end{tabular}

Description \(\quad R=\) poissrnd (LAMBDA) generates Poisson random numbers with mean LAMBDA. The size of \(R\) is the size of LAMBDA.
\(R=\) poissrnd(LAMBDA, \(m\) ) generates Poisson random numbers with mean LAMBDA. \(m\) is a 1-by- 2 vector that contains the row and column dimensions of \(R\).
\(R=p o i s s r n d(L A M B D A, m, n)\) generates Poisson random numbers with mean LAMBDA. The scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

Examples
Generate a random sample of 10 pseudo-observations from a Poisson distribution with \(\lambda=2\) :
```

lambda = 2;
random_sample1 = poissrnd(lambda,1,10)
random_sample1 =
1
random_sample2 = poissrnd(lambda,[1 10])
random_sample2 =
1
random_sample3 = poissrnd(lambda(ones(1,10)))
random_sample3 =

```
    \(\begin{array}{llllllllll}3 & 2 & 1 & 1 & 0 & 0 & 4 & 0 & 2 & 0\end{array}\)

\section*{2-186}

Purpose

\section*{Syntax}

M = poisstat(LAMBDA) \([\mathrm{M}, \mathrm{V}]=\) poisstat(LAMBDA)

Mean and variance for the Poisson distribution.
\(M=\) poisstat(LAMBDA) returns the mean of the Poisson distribution with parameter, LAMBDA. M and LAMBDA match each other in size.
[M,V] = poisstat(LAMBDA) also returns the variance of the Poisson distribution.

For the Poisson distribution:
- the mean is \(\lambda\).
- the variance is \(\lambda\).

\section*{Examples}

Find the mean and variance for the Poisson distribution with \(\lambda=2\) :
```

[m,v] = poisstat([1 2; 3 4])

```
m =
            12
            34
    v =
                            2
            \(3 \quad 4\)

Purpose Polynomial evaluation and confidence interval estimation.
Syntax
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] \(=\operatorname{polyconf}(\mathrm{p}, \mathrm{X}, \mathrm{S})\)
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] \(=\) polyconf( \(\mathrm{p}, \mathrm{X}, \mathrm{S}, \mathrm{alpha})\)

Description
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] \(=\) polyconf \((\mathrm{p}, \mathrm{X}, \mathrm{s})\) uses the optional output, S , generated by polyfit to give \(95 \%\) confidence intervals \(Y+/-\) DELTA. This assumes the errors in the data input to polyfit are independent normal with constant variance.
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] = polyconf( \(\mathrm{p}, \mathrm{X}, \mathrm{S}\), alpha) gives 100(1-alpha)\% confidence intervals. For example, alpha \(=0.1\) yields \(90 \%\) intervals.

If \(p\) is a vector whose elements are the coefficients of a polynomial in descending powers, such as those output from polyfit, then polyconf \((p, x)\) is the value of the polynomial evaluated at X . If x is a matrix or vector, the polynomial is evaluated at each of the elements.

\section*{Examples}

This example gives predictions and 90\% confidence intervals for computing time for LU factorizations of square matrices with 100 to 200 columns.
```

n = [100 100:20:200];
for i = n
A = rand(i,i);
tic
B = lu(A);
t(ceil((i-80)/20)) = toc;
end
[p,S] = polyfit(n(2:7),t,3);
[time,delta_t] = polyconf(p,n(2:7),S,0.1)
time =
0.0829 0.1476 0.2277 0.3375 0.4912 0.7032
delta_t =
0.0064 0.0057 0.0055 0.0055 0.0057 0.0064

```

\section*{2-188}

\section*{Purpose Polynomial curve fitting.}

\section*{Syntax \\ \[
[p, s]=\operatorname{polyfit}(x, y, n)
\]}

Description
\(p=\operatorname{polyfit}(x, y, n)\) finds the coefficients of a polynomial \(p(x)\) of degree \(n\) that fits the data, \(p(x(i))\) to \(y(i)\), in a least-squares sense. The result \(p\) is a row vector of length \(n+1\) containing the polynomial coefficients in descending powers.
\[
p(x)=p_{1} x^{n}+p_{2} x^{n-1}+\ldots p_{n} x+p_{n+1}
\]
[p,S] = polyfit(x,y,n) returns polynomial coefficients p, and matrix, s for use with polyval to produce error estimates on predictions. If the errors in the data, \(y\), are independent normal with constant variance, polyval will produce error bounds which contain at least \(50 \%\) of the predictions.

You may omit s if you are not going to pass it to polyval or polyconf for calculating error estimates.

\section*{Example}
```

[p,S] = polyfit(1:10,[1:10] + normrnd(0,1,1,10),1)
p =
1.0300 0.4561
S =
-19.6214 -2.8031
0-1.4639
8.0000 0
2.3180 0

```

\section*{See Also}
polyval, polytool, polyconf polyfit is a function in MATLAB.

Purpose Interactive plot for prediction of fitted polynomials.
```

Syntax polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)

```

Description polytool \((x, y)\) fits a line to the column vectors, \(x\) and \(y\), and displays an interactive plot of the result. This plot is graphic user interface for exploring the effects of changing the polynomial degree of the fit. The plot shows the fitted curve and \(95 \%\) global confidence intervals on a new predicted value for the curve. Text with current predicted value of \(y\) and its uncertainty appears left of the \(y\)-axis.
polytool ( \(x, y, n\) ) initially fits a polynomial of order, \(n\).
polytool( \(x, y, n\), alpha) plots 100(1-alpha)\% confidence intervals on the predicted values.
polytool fits by least-squares using the regression model,
\[
\begin{aligned}
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{n} x_{i}^{n}+\varepsilon_{i} \\
& \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \quad \forall i \\
& \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i, j
\end{aligned}
\]

Evaluate the function by typing a value in the x-axis edit box or dragging the vertical reference line on the plot. The shape of the pointer changes from an arrow to a cross hair when you are over the vertical line to indicate that the line is draggable. The predicted value of y will update as you drag the referenceline.

The argument, \(n\), controls the degree of the polynomial fit. To change the degree of the polynomial, choose from the pop-up menu at the top of the figure.
When you are done, press the Close button.

\section*{Purpose Polynomial evaluation.}
\begin{tabular}{ll} 
Syntax & \(Y=\operatorname{polyval}(p, X)\) \\
& {\([Y, \operatorname{DELTA}]=\operatorname{polyval}(p, x, S)\)}
\end{tabular}

\section*{Description}

\section*{Examples}
\(Y=\) polyval \((p, X)\) returns the predicted value of a polynomial given its coefficients, \(p\), at the values in \(X\).
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] = polyval( \(\mathrm{p}, \mathrm{X}, \mathrm{S}\) ) uses the optional output, S , generated by polyfit to generate error estimates, \(Y+\) - DELTA. If the errors in the data input to polyfit are independent normal with constant variance, \(Y\) H- DELTA contains at least \(50 \%\) of the predictions.

If \(p\) is a vector whose elements are the coefficients of a polynomial in descending powers, then polyval \((p, x)\) is the value of the polynomial evaluated at \(x\). If \(x\) is a matrix or vector, the polynomial is evaluated at each of the elements.

Simulate the function \(y=x\), adding normal random errors with a standard deviation of 0.1. Then use polyfit toestimate the polynomial coefficients. Note that tredicted \(Y\) values are within DELTA of the integer, \(X\), in every case.
```

[p,S] = polyfit(1:10,(1:10) + normrnd(0,0.1,1,10),1);
X = magic(3);
[Y,D] = polyval(p,X,S)
Y =

| 8.0696 | 1.0486 | 6.0636 |
| :--- | :--- | :--- |
| 3.0546 | 5.0606 | 7.0666 |
| 4.0576 | 9.0726 | 2.0516 |

D =

| 0.0889 | 0.0951 | 0.0861 |
| :--- | :--- | :--- |
| 0.0889 | 0.0861 | 0.0870 |
| 0.0870 | 0.0916 | 0.0916 |

polyfit, polytool, polyconf polyval is a function in MATLAB.

```

\section*{See Also}

Purpose Percentiles of a sample.

\section*{Syntax \(\quad Y=\operatorname{prctile}(X, p)\)}

Description \(\quad Y=\operatorname{prctile}(X, p)\) calculates a value that is greater than \(p\) percent of the values in \(x\). The values of \(p\) must lie in the interval [0 100].
For vectors, prctile \((X, p)\) is the pth percentile of the elements in \(X\). For instance, if \(p=50\) then \(Y\) is the median of \(X\).

For matrix \(X\) and scalar \(p, \operatorname{prctile}(X, p)\) is a row vector containing the pth percentile of each column. If \(p\) is a vector, the ith row of \(Y\) is \(p(i)\) of \(X\).

\section*{Examples}
```

x = (1:5)'*(1:5)
x =

| 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: |
| 2 | 4 | 6 | 8 | 10 |
| 3 | 6 | 9 | 12 | 15 |
| 4 | 8 | 12 | 16 | 20 |
| 5 | 10 | 15 | 20 | 25 |

y = prctile(x,[25 50 75])
y =

| 1.7500 | 3.5000 | 5.2500 | 7.0000 | 8.7500 |
| ---: | ---: | ---: | ---: | ---: |
| 3.0000 | 6.0000 | 9.0000 | 12.0000 | 15.0000 |
| 4.2500 | 8.5000 | 12.7500 | 17.0000 | 21.2500 |

```

\section*{Purpose \\ Principal Components Analysis (PCA).}
\begin{tabular}{|c|c|}
\hline Syntax & ```
PC = princomp(X)
[PC,SCORE,latent,tsquare] = princomp(X)
``` \\
\hline Description & [PC, SCORE, latent, tsquare] = princomp (X) takes a data matrix \(X\) and returns the principal components in PC, the so-called Z-scores in SCORE, the eigenvalues of the covariance matrix of \(x\) in latent, and Hotelling's \(T^{2}\) statistic for each data point in tsquare. \\
\hline & The Z-scores are the data formed by transforming the original data into the space of the principal components. The values of the vector, latent, are the variance of the col umns of SCORE. Hotelling's \(T^{2}\) is a measure of the multivariate distance of each observation from the center of the data set. \\
\hline \multirow[t]{12}{*}{Example} & Compute principal components for the ingredients data in the Hald dataset, and the variance accounted for by each component. \\
\hline & ```
load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent
``` \\
\hline & \(\mathrm{pc}=\) \\
\hline & \(0.0678-0.6460 \quad 0.5673-0.5062\) \\
\hline & \(0.6785-0.0200-0.5440-0.4933\) \\
\hline & -0.0290 \(0.75530 .4036-0.5156\) \\
\hline & -0.7309 -0.1085 -0.4684 -0.4844 \\
\hline & latent \(=\) \\
\hline & 517.7969 \\
\hline & 67.4964 \\
\hline & 12.4054 \\
\hline & 0.2372 \\
\hline Reference & J ackson, J. E., A U ser's Guideto Principal Components, J ohn Wiley and Sons, Inc. 1991. pp. 1-25. \\
\hline See Also & barttest, pcacov, pcares \\
\hline
\end{tabular}
See Also barttest, pcacov, pcares

\section*{qqplot}

Purpose Quantile-quantile plot of two samples.
Syntax
```

qqplot(X,Y)
qqplot(X,Y,pvec)
h = qqplot(...)

```

Description qqplot ( \(\mathrm{X}, \mathrm{Y}\) ) displays a quantile-quantile plot of two samples. If the samples do come from the same distribution, the plot will be linear.

For matrix \(X\) and \(Y\), qqplot displays a separate line for each pair of columns. The plotted quantiles are the quantiles of the smaller dataset.

Theplot has the sample data displayed with the plot symbol ' + '. Superimposed on the plot is a linejoining the first and third quartiles of each distribution (this is a robust linear fit of the order statistics of the two samples). This line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.

Use qqplot ( \(\mathrm{X}, \mathrm{Y}, \mathrm{pvec}\) ) to specify the quantiles in the vector pvec.
\(\mathrm{h}=\mathrm{qqplot}(\mathrm{X}, \mathrm{Y}, \mathrm{pvec})\) returns handles to the lines in h .

\section*{Examples}

Generate two normal samples with different means and standard deviations. Then make a quantilequantile plot of the two samples.
```

x = normrnd(0,1,100,1);
y = normrnd(0.5,2,50,1);
qqplot(x,y);

```


Purpose

\section*{Syntax}

Description

Random numbers from a specified distribution.
\(\mathrm{y}=\) random('name', \(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~m}, \mathrm{n})\)
random is a utility routine allowing you to access all the random number generators in the Statistics Tool box using the name of the distribution as a parameter.
\(\mathrm{y}=\) random('name ', \(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~m}, \mathrm{n})\) returns a matrix of random numbers. ' name' is a string containing the name of the distribution. A1, A2, and A3 are matrices of distribution parameters. Depending on the distribution some of the parameters may not be necessary.

The arguments containing distribution parameters must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The last two parameters, \(d\) and \(e\), are the size of the matrix, \(y\). If the distribution parameters are matrices, then these parameters are optional, but they must match the size of the other matrix arguments (see second example).

\section*{Examples}
```

rn = random('Normal',0,1,2,4)
rn =
1.1650 0.0751 -0.6965 0.0591
0.6268 0.3516 1.6961 1.7971
rp = random('Poisson',1:6,1,6)
rp =

```
\begin{tabular}{llllll}
0 & 0 & 1 & 2 & 5 & 7
\end{tabular}

Purpose Interactive random number generation using histograms for display.
\begin{tabular}{ll} 
Syntax & randtool \\
\(r=\) randtool ('output ')
\end{tabular}

Description The randtool command sets up a graphic user interface for exploring the effects of changing parameters and sample size on the histogram of random samples from the supported probability distributions.

The M -file calls itself recursively using the action and flag parameters. For general use call randtool without parameters.

To output the current set of random numbers, press the Output button. The results are stored in the variable ans. Alternatively, the command
\(r=r a n d t o o l(' o u t p u t ')\) places the sample of random numbers in the vector, \(r\).

To sample repetitively from the same distribution, press the Resample button.
To change the distribution function, choose from the pop-up menu of functions at the top of the figure.

To change the parameter settings, move the sliders or type a value in the edit box under the name of the parameter. To changethe limits of a parameter, type a value in the edit box at the top or bottom of the parameter slider.

To change the sample size, type a number in the Sample Size edit box.
When you are done, press the Close button.
For an extensive discussion, see "The disttool Demo" on page 1-125.

\section*{See Also \\ disttool}
Purpose Sample range.
Syntax \(y=r a n g e(X)\)
Description range ( X ) returns the difference between the maximum and the minimum of asample. For vectors, range ( \(x\) ) is the range of the elements. F or matrices,range \((X)\) is a row vector containing the range of each column of \(X\).
The range is an easily cal culated estimate of the spread of a sample. Outliers have an undue influence on this statistic, which makes it an unreliable estimator.
```

Example The range of a large sample of standard normal random numbers is
approximately six. This is the motivation for the process capability indices Cp
and C Ck
rv = normrnd(0,1,1000,5);
near6 = range(rv)
near6 =
6.1451 6.4986 6.2909 5.8894 7.0002

```
See Also
    std, iqr, mad
Purpose Wilcoxon rank sum test that two populations are identical.
\begin{tabular}{ll} 
Syntax & \(p=\operatorname{ranksum}(x, y, a l p h a)\) \\
{\([p, h]=\operatorname{ranksum}(x, y, a l p h a)\)}
\end{tabular}

\section*{Description}

\section*{Example}

\section*{See Also}
\(p=\operatorname{ranksum}(x, y\), alpha) returns the significance probability that the populations generating two independent samples, \(x\) and \(y\), are identical. \(x\) and \(y\) are vectors but can have different lengths; if they are unequal in length, \(x\) must be smaller than \(y\). alpha is the desired level of significance and must be a scalar between zero and one.
\([p, h]=r a n k s u m(x, y, a l p h a)\) also returns the result of the hypothesis test, \(h\). \(h\) is zero if the populations of \(x\) and \(y\) are not significantly different. \(h\) is one if the two populations are significantly different.
\(p\) is the probability of observing a result equally or more extreme than the one using the data ( \(x\) and \(y\) ) if the null hypothesis is true. If \(p\) is near zero, this casts doubt on this hypothesis.

This example tests the hypothesis of equality of means for two samples generated with poissrnd.
```

x = poissrnd(5,10,1);

```
y = poissrnd(2,20,1);
[ \(\mathrm{p}, \mathrm{h}\) ] = ranksum(x,y,0.05)
\(p=\)
0.0028
\(\mathrm{h}=\)
1
signrank, signtest, ttest2

\section*{2-198}

Purpose

\section*{Syntax}

Description

Rayleigh cumulative distribution function (cdf).
\(P=\operatorname{raylcdf}(X, B)\)
\(P=\operatorname{raylcdf}(X, B)\) returns the Rayleigh cumulative distribution function with parameter \(B\) at the values in \(X\).
The size of \(P\) is the common size of \(X\) and \(B\). A scalar input functions as a constant matrix of the same size as the other input.

The Rayleigh cdf is:
\[
y=F(x \mid b)=\int_{0}^{x} \frac{t}{b^{2}} e^{\left(\frac{-t^{2}}{2 b^{2}}\right)} d t
\]

\section*{Example}

Reference

See Also


Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, Wiley 1993. pp. 134-136.
cdf, raylinv, raylpdf, raylrnd, raylstat

Purpose

\section*{Syntax}

Description

I nverse of the Rayleigh cumulative distribution function.
\(X=\operatorname{raylinv}(P, B)\)
\(X=\) raylinv \((P, B)\) returns the inverse of the Rayleigh cumulative distribution function with parameter \(B\) at the probabilities in \(P\).

The size of \(X\) is the common size of \(P\) and \(B\). A scalar input functions as a constant matrix of the same size as the other input.

Example
\[
\begin{aligned}
& x=\operatorname{raylinv}(0.9,1) \\
& x=
\end{aligned}
\]
2.1460

See Also
icdf, raylcdf, raylpdf, raylrnd, raylstat

Purpose

\section*{Syntax}

Description

Rayleigh probability density function.
\[
Y=\operatorname{raylpdf}(X, B)
\]
\(Y=\) raylpdf( \(X, B\) ) returns the Rayleigh probability density function with parameter \(B\) at the values in \(X\).
The size of \(Y\) is the common size of \(X\) and \(B\). A scalar input functions as a constant matrix of the same size as the other input.

The Rayleigh pdf is:
\[
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
\]

\section*{Example}
```

x = 0:0.1:3;
p = raylpdf(x,1);
plot(x,p)

```


See Also raylcdf, raylinv, raylrnd, raylstat

Purpose
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{raylrnd}(B)\) \\
\(R\) & \(=\operatorname{rayl} \operatorname{rnd}(B, m)\) \\
\(R\) & \(=\operatorname{raylnd}(B, m, n)\)
\end{tabular}

\section*{Example}
```

r = raylrnd(1:5)
r =

1.7986	0.8795	3.3473	8.9159	3.5182

```

See Also random, raylcdf, raylinv, raylpdf, raylstat

Mean and variance for the Rayleigh distribution.

Purpose

\section*{Syntax \\ Description}M = raylstat(B)
\[
[M, V]=\text { raylstat }(B)
\] distribution with parameter B .
For the Rayleigh distribution:
- The mean is \(b\left(\frac{\pi}{2}\right)^{\frac{1}{2}}\).
- The variance is \(\frac{4-\pi}{2} \mathrm{~b}^{2}\).

\section*{Example}
\[
[\mathrm{mn}, \mathrm{v}]=\text { raylstat(1) }
\]
mn =
1.2533
v =
0.4292
\([M, V]=\) raylstat \((B)\) returns the mean and variance of the Rayleigh

See Also
raylcdf,raylinv, raylpdf, raylrnd

Purpose Residual case order plot.

\section*{Syntax \\ rcoplot(r,rint)}

Description

\section*{Example}

\section*{See Also}

Purpose

\section*{Syntax}

Description

\section*{Example}

Add a polynomial curve to the current plot.
\(h=r e f c u r v e(p)\)
refcurve adds a graph of the polynomial, \(p\), to the current axes. The function for a polynomial of degree \(n\) is:
\[
y=p_{1} x^{n}+p_{2} x^{(n-1)}+\ldots+p_{n} x+p_{n+1}
\]
\(N\) ote that \(p_{1}\) goes with the highest order term.
\(h=r e f c u r v e(p)\) returns the handle to the curve.
Plot data for the height of a rocket against time, and add a reference curve showing the theoretical height (assuming no air friction). The initial velocity of the rocket is \(100 \mathrm{~m} / \mathrm{sec}\).
```

h = [85 162 230 289 339 381 413 437 452 458 456 440 400 356];

```
plot (h, '+')
refcurve([-4.9 1000\(]\) )


\section*{See Also}
polyfit, polyval,refline

\section*{refline}

\section*{Purpose Add a reference line to the current axes.}
```

Syntax

```
Description

\section*{Example}

\section*{See Also}
lsline, polyfit, polyval, refcurve

\section*{Purpose Multiple linear regression.}
```

Syntax b = regress(y,x)
[b,bint,r,rint,stats] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,x,alpha)

```

\section*{Description \\ \(b=r e g r e s s(y, x)\) returns the least squares fit of \(y\) on \(x\).}
regress solves the linear model
\[
\begin{aligned}
& y=X \beta+\varepsilon \\
& \varepsilon \sim N\left(0, \sigma^{2} I\right)
\end{aligned}
\]
for \(\beta\), where:
- y is an nx vector of observations,
- \(X\) is an nxp matrix of regressors,
- \(\beta\) is a pxl vector of parameters, and
- \(\varepsilon\) is an \(n x 1\) vector of random disturbances.
[b,bint, \(r\), rint, stats] = regress \((y, x)\) returns an estimate of \(\beta\) in \(b, a 95 \%\) confidence interval for \(\beta\), in the \(p\)-by- 2 vector bint. The residuals are in \(r\) and a \(95 \%\) confidence interval for each residual, is in the \(n\)-by- 2 vector rint. The vector, stats, contains the \(R^{2}\) statistic along with the \(F\) and \(p\) values for the regression.
[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1-alpha)\% confidence intervals for bint and rint. For example, alpha \(=0.2\) gives \(80 \%\) confidence intervals.

\section*{Examples}

Suppose the true model is:
\[
\begin{gathered}
y=10+x+\varepsilon \\
\varepsilon \sim N(0,0.011)
\end{gathered}
\]
where \(I\) is the identity matrix.
```

X = [ones(10,1) (1:10)']
X =
1
2
3
4
1 5
1}
7
8
1 9
10
y = X * [10;1] + normrnd(0,0.1,10,1)
y =
11.1165
12.0627
13.0075
14.0352
14.9303
16.1696
17.0059
18.1797
19.0264
20.0872
[b,bint] = regress(y,X,0.05)
b =
10.0456
1.0030
bint =
9.9165 10.1747
0.9822 1.0238

```

Compare b to [10 1] '. Note that bint includes the true model values.
Reference
Chatterjee, S. and A. S. Hadi. Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science, 1986. pp. 379-416.

\section*{Purpose Regression diagnostics graphical user interface.}
```

Syntax regstats(responses,DATA)
regstats(responses,DATA,'model')

```

\section*{Description}
regstats (responses, DATA) generates regression diagnostics for a linear additive model with a constant term. The dependent variable is the vector, responses. Values of the independent variables are in the matrix, DATA.

The function creates a figure with a group of checkboxes that save diagnostic statistics to the base workspace using variable names you can specify.
regstats(responses, data, 'model') controls the order of the regression model. 'model' can be one of these strings:
- 'interaction' - includes constant, linear, and cross product terms.
- 'quadratic ' - interactions plus squared terms.
- 'purequadratic ' - includes constant, linear and squared terms.

The literature suggests many diagnostic statistics for evaluating multiple linear regression. regstats provides these diagnostics:
- Q from QR decomposition.
- R from QR decomposition.
- Regression coefficients.
- Covariance of regression coefficients.
- Fitted values of the response data.
- Residuals.
- Mean squared error.
- Leverage.
- "Hat" matrix.
- Delete-1 variance.
- Delete-1 coefficients.
- Standardized residuals.
- Studentized residuals.
- Change in regression coefficients.
- Change in fitted values.
- Scaled change in fitted values.
- Change in covariance.
- Cook's distance.

F or more detail press the Help button in the regstats window. This displays a hypertext help that gives formulae and interpretations for each of these regression diagnostics.

Algorithm

Reference

See Also

The usual regression model is: \(y=X \beta+\varepsilon\) where:
- y is an n by 1 vector of responses.
- \(X\) is an \(n\) by \(p\) matrix of predictors.
- \(\beta\) is an \(p\) by 1 vector of parameters.
- \(\varepsilon\) is an \(n\) by 1 vector of random disturbances.

Let \(X=Q * R\) where \(Q\) and \(R\) come from a \(Q R\) Decomposition of \(X\). \(Q\) is orthogonal and \(R\) is triangular. Both of these matrices are useful for calculating many regression diagnostics (Goodall 1993).

The standard textbook equation for the least squares estimator of \(\beta\) is:
\(\beta=b=\left(X^{\prime} X\right)^{-1} X^{\prime} y\)
However, this definition has poor numeric properties. Particularly dubious is the computation of \(\left(X^{\prime} X\right)^{-1}\), which is both expensive and imprecise.

Numerically stable MATLAB code for \(\beta\) is: \(b=R \backslash\left(Q^{\prime *} y\right)\);
Goodall, C. R. (1993). Computation using the QR decomposition. Handbook in Statistics, Volume 9. Statistical Computing (C. R. Rao, ed.). Amsterdam, NL Elsevier/North-Holland.
leverage, stepwise, regress

\section*{Purpose Parameter estimates for ridge regression.}

\section*{Syntax \\ b = ridge( \(\mathrm{y}, \mathrm{x}, \mathrm{k}\) )}

Description \(\quad b=r i d g e(y, x, k)\) returns the ridge regression coefficients, \(b\).
Given the linear model \(y=X \beta+\varepsilon\)
where:
- \(X\) is an \(n\) by \(p\) matrix.
- y is the n by 1 vector of observations.
- \(k\) is a scalar constant (the ridge parameter).

The ridge estimator of \(\beta\) is: \(b=\left(X^{\prime} X+k I\right)^{-1} X^{\prime} y\).
When \(k=0, b\) is the least squares estimator. For increasing \(k\), the bias of \(b\) increases, but the variance of \(b\) falls. F or poorly conditioned \(x\), the drop in the variance more than compensates for the bias.

\section*{Example}

This example shows how the coefficients change as the value of \(k\) increases, using data from the hald dataset.
```

load hald;
b = zeros(4,100);
kvec = 0.01:0.01:1;
count = 0;
for k = 0.01:0.01:1
count = count + 1;
b(:,count) = ridge(heat,ingredients,k);
end
plot(kvec',b'),xlabel('k'),ylabel('b','FontName','Symbol')

```


\section*{ridge}

\section*{See Also \\ regress, stepwise}

Purpose
D-optimal design of experiments - row exchange algorithm.

\section*{Syntax \\ Description}

\section*{Example}

See Also
```

settings = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns,'model')

```
settings = rowexch(nfactors,nruns) generates the factor settings matrix, settings, for a D-Optimal design using a linear additive model with a constant term. settings has nruns rows and nfactors columns.
[settings, X ] = rowexch(nfactors, nruns) also generates the associated design matrix, X .
[settings, X] = rowexch(nfactors, nruns,'model') produces a design for fitting a specified regression model. The input, 'model' ', can be one of these strings:
- 'interaction' - includes constant, linear, and cross product terms.
- 'quadratic' - interactions plus squared terms.
- 'purequadratic ' - includes constant, linear and squared terms.

This example illustrates that the D-optimal design for three factors in eight runs, using an interactions model, is a two level full-factorial design.
```

s = rowexch(3,8,'interaction')
s =

-1	-1	1
1	-1	-1
1	-1	1
-1	-1	-1
-1	1	1
1	1	1
-1	1	-1
1	1	-1

```
cordexch, daugment, dcovary, fullfact, ff2n, hadamard
Purpose Demo of design of experiments and surface fitting.
Syntax rsmdemo
Description rsmdemo creates a GUI that simulates a chemical reaction. To start, you havea budget of 13 test reactions. Try tofind out how changes in each reactant affectthe reaction rate. Determine the reactant settings that maximize the reactionrate. Estimate the run-to-run variability of the reaction. Now run a designedexperiment using the model pop-up. Compare your previous results with theoutput from response surface modeling or nonlinear modeling of the reaction.The GUI has the following elements:
- A Run button to perform one reactor run at the current settings.
- An Export button to export the X and y data to the base workspace.
- Three sliders with associated data entry boxes to control the partial pressures of the chemical reactants: Hydrogen, n-Pentane, and I sopentane.
- A text box to report the reaction rate.
- A text box to keep track of the number of test reactions you have left.
Example See "The rsmdemo Demo" on page 1-131.
See Also ..... rstool, nlintool, cordexch

\section*{Purpose \\ Interactive fitting and visualization of a response surface.}

```

rstool(x,y)
stool(x,y,'model')
rstool(x,y,'model',alpha,'xname','yname')

```
rstool ( \(x, y\) ) displays an interactive prediction plot with \(95 \%\) gl obal confidence intervales. This plot results from a multiple regression of ( \(\mathrm{X}, \mathrm{y}\) ) data using a linear additive model.
rstool(x,y, 'model') allows control over theinitial regression model. 'model' can be one of the following strings:
- 'interaction' - includes constant, linear, and cross product terms.
- 'quadratic ' - interactions plus squared terms.
- 'purequadratic ' - includes constant, linear and squared terms.
rstool(x,y, 'model' , alpha) plots 100(1-alpha)\% global confidence interval for predictions as two red curves. For example, alpha \(=0.01\) gives \(99 \%\) conidence intervals.
rstool displays a "vector" of plots, one for each column of the matrix of inputs, \(x\). Theresponse variable, \(y\), is a column vector that matches the number of rows in \(x\).
rstool(x,y,'model', alpha, 'xname', 'yname') labels the graph using the string matrix ' xname ' for the labels to the \(x\)-axes and the string, 'yname ', to label the \(y\)-axis common to all the plots.

Drag the dotted white reference line and watch the predicted values update simultaneously. Alternatively, you can get a specific prediction by typing the value of \(x\) into an editable text field. Use the pop-up menu labeled Model to interactively change the model. Use the pop-up menu labeled Export to move specified variables to the base workspace.

See "Quadratic Response Surface M odels" on page 1-73.
nlintool

\section*{schart}

\section*{Purpose Chart of standard deviation for Statistical Process Control.}
```

Syntax schart(DATA,conf)
schart(DATA, conf,specs)
schart(DATA,conf,specs)
[outliers,h] = schart(DATA,conf,specs)

```

\section*{Description}

Example
schart (data) displays an S chart of the grouped responses in DATA. The rows of DATA contain replicate observations taken at a given time. The rows must be in time order. The upper and lower control limits are a 99\% confidence interval on a new observation from the process. So, roughly \(99 \%\) of the plotted points should fall between the control limits.
schart (DATA, conf) allows control of the the confidence level of the upper and lower plotted confidence limits. F or example, conf \(=0.95\) plots \(95 \%\) confidence intervals.
schart (DATA, conf, specs) plots the specification limits in the two element vector, specs.
[outliers,h] = schart(data, conf, specs) returns outliers, a vector of indices to the rows where the mean of DATA is out of control, and \(h\), a vector of handles to the plotted lines.

This example plots an S chart of measurements on newly machined parts, taken at one hour intervals for 36 hours. E ach row of the runout matrix contains the measurements for 4 parts chosen at random. The values indicate,
in thousandths of an inch, the amount the part radius differs from the target radius.
```

load parts
schart(runout)

```

S Chart


\section*{Reference}

See Also

Montgomery, D., Introduction to Statistical Quality Control, J ohn Wiley and Sons 1991. p. 235.
capaplot, ewmaplot, histfit, xbarplot

\section*{signrank}

Purpose Wilcoxon signed rank test of equality of medians.
\begin{tabular}{ll} 
Syntax & \(p=\operatorname{signrank}(x, y\), alpha \()\) \\
& {\([p, h]=\operatorname{signrank}(x, y, a l p h a)\)}
\end{tabular}

Description

\section*{Example}
\(p=\) signrank( \(x, y\), alpha) returns the significance probability that the medians of two matched samples, \(x\) and \(y\), are equal. \(x\) and \(y\) must be vectors of equal length. alpha is the desired level of significance, and must be a scalar between zero and one.
[ \(\mathrm{p}, \mathrm{h}]=\operatorname{signrank}(\mathrm{x}, \mathrm{y}\), alpha) also returns the result of the hypothesis test, \(h\). \(h\) is zero if the difference in medians of \(x\) and \(y\) is not significantly different from zero. \(h\) is one if the two medians are significantly different.
\(p\) is the probability of observing a result equally or more extreme than the one using the data ( \(x\) and \(y\) ) if the null hypothesis is true. \(p\) is calculated using the rank values for the differences between corresponding elements in \(x\) and \(y\). If \(p\) is near zero, this casts doubt on this hypothesis.

This example tests the hypothesis of equality of means for two samples generated with normrnd. The samples have the same theoretical mean but different standard deviations.
```

x = normrnd(0,1,20,1);
y = normrnd(0,2,20,1);
[p,h] = signrank(x,y,0.05)
p =
0.2568
h =
0
ranksum, signtest, ttest

```

\section*{See Also}

2-218

\section*{Purpose \\ Sign test for paired samples.}
Syntax
\(\mathrm{p}=\) signtest( \(\mathrm{x}, \mathrm{y}, \mathrm{alpha})\)
[p,h] = signtest(x,y,alpha)

\section*{Description}

\section*{Example}

This example tests the hypothesis of equality of means for two samples generated with normrnd. The samples have the same theoretical mean but different standard deviations.
```

x = normrnd(0,1,20,1);
y = normrnd(0,2,20,1);
[p,h] = signtest(x,y,0.05)
p =
0.8238
h =
0

```

\section*{See Also}

\section*{Purpose Sample skewness.}
Syntax
y = skewness(X)

Description skewness ( \(X\) ) returns thesampleskewness of \(X\). For vectors, skewness \((x)\) is the skewness of the elements of \(x\). For matrices, skewness \((X)\) is a row vector containing the sample skewness of each column.

Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the data are spread out more to the left of the mean than to the right. If skewness is positive, the data are spread out more to the right. The skewness of the normal distribution (or any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as:
\[
y=\frac{E(x-\mu)^{3}}{\sigma^{3}}
\]
where \(E(x)\) is the expected value of \(x\).

\section*{Example}
```

X = randn([5 4])
X =

1.1650	1.6961	-1.4462	-0.3600
0.6268	0.0591	-0.7012	-0.1356
0.0751	1.7971	1.2460	-1.3493
0.3516	0.2641	-0.6390	-1.2704
-0.6965	0.8717	0.5774	0.9846

y = skewness(X)
y =
-0.2933 0.0482 0.2735 0.4641

```

\footnotetext{
See Also
kurtosis, mean, moment, std, var
}

Purpose Reformat the output of pdist into a square matrix.
Syntax \(\quad S=\) squareform \((Y)\)

Description \(\quad S=\) squareform \((Y)\) reformats the distance information returned by pdist from a vector into a square matrix. In this format, \(\mathrm{S}(\mathrm{i}, \mathrm{j})\) denotes the distance between the \(i\) and \(j\) observations in the original data.

See Also See pdist.

\section*{Purpose Standard deviation of a sample.}

\section*{Syntax \\ \(y=\operatorname{std}(X)\)}

Description
std ( \(X\) ) computes the sample standard deviation of the data in \(X\). For vectors, \(\operatorname{std}(x)\) is the standard deviation of the elements in \(x\). For matrices, \(\operatorname{std}(X)\) is a row vector containing the standard deviation of each column of \(x\).
std ( X ) normalizes by \(\mathrm{n}-1\) where n is the sequence length. For normally distributed data, the square of the standard deviation is the minimum variance unbiased estimator of \(\sigma^{2}\) (the second parameter).

The standard deviation is
\[
s=\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{\frac{1}{2}}
\]
where the sample average is \(\bar{x}=\frac{1}{n} \sum x_{i}\).

\section*{Examples \\ In each column, the expected value of \(y\) is one.}
```

x = normrnd(0,1,100,6);
y = std(x)
y =
0.9536 1.0628 1.0860 0.9927 0.9605 1.0254
y = std(-1:2:1)
y =

```
1.4142

See Also
cov, var
std is a function in MATLAB.

Purpose Interactive environment for stepwise regression.

\author{
Syntax \\ Description
}

Example
Reference

See Also regstats, regress, rstool
```

stepwise(X,y)
stepwise(X,y,inmodel)
stepwise(X,y,inmodel,alpha)

```
stepwise ( \(X, y\) ) fits a regression model of \(y\) on the columns of \(X\). It displays three figure windows for interactively controlling the stepwise addition and removal of model terms.
stepwise ( \(\mathrm{X}, \mathrm{y}\), inmodel) allows control of the terms in the original regression model. The values of vector, inmodel, are the indices of the columns of the matrix, \(x\), to include in the initial model.
stepwise ( \(X, y\), inmodel, alpha) allows control of the length confidence intervals on the fitted coefficients. alpha is the significance for testing each of columns in X . This translates to plotted \(95 \%\) simultaneous confidence intervals (Bonferroni) for all the coefficients.

The least squares coefficient is plotted with a green filled circle. A coefficient is zero line. Significant model terms are plotted using solid lines. Terms not signifi cantly different from zero are plotted with dotted lines.

Click on the confidence interval lines to toggle the state of the model coefficients. If the confidence interval line is green the term is in the model. If the the confidence interval line is red the term is not in the model.

Use the pop-up menu, Export, to move variables to the base workspace.
See "Stepwise Regression" on page 1-75.
Draper, N. and H. Smith, Applied Regression Analysis, Second Edition, J ohn Wiley and Sons, Inc. 1981 pp. 307-312. term in the model. By default, alpha \(=1-(1-0.025)^{(1 / \mathrm{p})}\) where p is the number not significantly different from zero if its confidence interval crosses the white

Purpose Interactive contour plot.
\begin{tabular}{ll} 
Syntax & surfht \((z)\) \\
& surfht \((x, y, z)\)
\end{tabular}

Description
surfht \((Z)\) is an interactive contour plot of the matrix \(Z\) treating the values in \(Z\) as height above the plane. The \(x\)-values are the column indices of \(Z\) while the \(y\)-values are the row indices of \(z\).
surfht ( \(x, y, z\) ), where \(x\) and \(y\) are vectors specify the \(x\) and \(y\)-axes on the contour plot. The length of \(x\) must match the number of columns in \(z\), and the length of \(y\) must match the number of rows in \(z\).

There are vertical and horizontal referencelines on the plot whose intersection defines the current \(x\)-value and \(y\)-value. \(Y\) ou can drag these dotted white reference lines and watch the interpolated \(z\)-value (at the top of the plot) update simultaneously. Alternatively, you can get a specific interpolated \(z\)-value by typing the \(x\)-value and \(y\)-value into editable text fields on the \(x\)-axis and \(y\)-axis respectively.

\section*{Purpose Frequency table.}
\begin{tabular}{ll} 
Syntax & table \(=\) tabulate \((x)\) \\
& tabulate \((x)\)
\end{tabular}

Description table \(=\) tabulate \((x)\) takes a vector of positive integers, \(x\), and returns a matrix, table.

The first column of table contains the values of \(x\). The second contains the number of instances of this value. The last column contains the percentage of each value.
tabulate with no output arguments displays a formatted table in the command window.

\section*{Example}
tabulate([ \(\left.\begin{array}{llllll}1 & 2 & 4 & 4 & 3 & 4\end{array}\right]\)
\begin{tabular}{rrr} 
Value & Count & Percent \\
1 & 1 & \(16.67 \%\) \\
2 & 1 & \(16.67 \%\) \\
3 & 1 & \(16.67 \%\) \\
4 & 3 & \(50.00 \%\)
\end{tabular}

\section*{See Also \\ pareto}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Read tabular data from the file system.} \\
\hline Syntax & \multicolumn{2}{|l|}{```
[data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread('filename')
[data,varnames,casenames] = tblread('filename','delimiter')
```} \\
\hline Description & \begin{tabular}{l}
[data,varna interactives in the first r position. \\
[data, varna specification pathname of \\
[data, varna specification 'space ', or tblread retur
\end{tabular} & \begin{tabular}{l}
s, casenames] = tblread displays the File Open dialog box for ection of thetabular data file. Thefile format has variablenames , case names in the first column and data starting in the \((2,2)\) \\
s, casenames] = tblread(filename) allows command line the name of a file in the current directory, or the complete ny file. \\
s,casenames] = tblread(filename,'delimiter') allows the field 'delimiter' in the file. Accepted values are 'tab', mma'. \\
ss the data read in three values.
\end{tabular} \\
\hline & Return Value & Description \\
\hline & data & Numeric matrix with a value for each variable-case pair. \\
\hline & varnames & String matrix containing the variable names in the first row. \\
\hline & casenames & String matrix containing the names of each case in the first column. \\
\hline
\end{tabular}
Example [data, varnames,casenames] = tblread('sat.dat') data =
470 530
520 480
varnames =
Male
Female
casenames =
Verbal
Quantitative
See Also caseread, tblwrite

Purpose

\section*{Syntax}

Description tcdf(\(X, V\)) computes Student's \(t\) cdf with \(v\) degrees of freedom at the values in \(X\). The arguments \(X\) and \(v\) must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument.
The parameter, v , is a positive integer.
The t cdf is:
\[
\mathrm{p}=\mathrm{F}(\mathrm{x} \mid \mathrm{v})=\int_{-\infty}^{\mathrm{x}} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{\mathrm{t}^{2}}{v}\right)^{\frac{v+1}{2}}} d t
\]

The result, \(p\), is the probability that a single observation from the \(t\) The result, \(p\), is the probability that a single observation from the \(t\)
distribution with \(v\) degrees of freedom will fall in the interval \((-\infty x]\).

\section*{Examples}

Student's t cumulative distribution function (cdf).
\[
P=\operatorname{tcdf}(X, V)
\]

Suppose 10 samples of Guinness beer have a mean alcohol content of \(5.5 \%\) by volume and the standard deviation of these samples is \(0.5 \%\). What is the probability that the true alcohol content of Guinness beer is less than 5\%?
```

t = (5.0 - 5.5) / 0.5;
probability = tcdf(t,10 - 1)
probability =
0.1717

```

\section*{Purpose Inverse of the Student's t cumulative distribution function (cdf).}

\section*{Syntax}

Description \(\quad \operatorname{tinv}(P, V)\) computes the inverse of Student's \(t\) cdf with parameter \(v\) for the probabilities in \(P\). The arguments \(P\) and \(V\) must be the same size except that a scalar argument functions as a constant matrix of the size of the other argument.

The degrees of freedom, \(v\), must be a positive integer and \(P\) must lie in the interval [01].

The \(t\) inverse function in terms of the cdf is
\[
x=F^{-1}(p \mid v)=\{x: F(x \mid v)=p\}
\]
where
\[
p=F(x \mid v)=\int_{-\infty}^{x} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{t^{2}}{v}\right)^{\frac{v+1}{2}}} d t
\]

Theresult, \(x\), is the solution of the integral equation of thet cdf with parameter \(v\) where you supply the desired probability \(p\).

Examples What is the 99th percentile of the tistribution for one to six degrees of freedom?
```

percentile = tinv(0.99,1:6)
percentile =

```
31.8205
6.9646
4.5407
3.7469
3.3649
3.1427

\section*{Purpose Student's t probability density function (pdf).}

\section*{Syntax \\ \(Y=\operatorname{tpdf}(X, V)\)}

Description
tpdf(\(X, V\)) computes Student's t pdf with parameter \(V\) at the values in \(X\). The arguments \(X\) and \(v\) must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument.

The degrees of freedom, v, must be a positive integer.
Student's t pdf is:
\[
y=f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
\]

\section*{Examples}

The mode of the distribution is at \(x=0\). This example shows that the value of the function at the mode is an increasing function of the degrees of freedom.
```

tpdf(0,1:6)
ans =
0.3183 0.3536 0.3676 0.3750

```

Thet distribution converges to the standard normal distribution as the degrees of freedom approaches infinity. How good is the approximation for \(v=30\) ?
```

difference = tpdf(-2.5:2.5,30) - normpdf(-2.5:2.5)
difference =
0.0035 -0.0006 -0.0042 -0.0042 -0.0006 0.0035

```

Purpose Mean of a sample of data excluding extreme values.
Syntax \(\quad m=\) trimmean \((X\), percent \()\)
Description trimmean (X, percent) calculates the mean of a sample \(x\) excluding the highest and lowest percent \(/ 2\) of the observations. The trimmed mean is a robust estimate of the location of a sample. If there are outliers in the data, the trimmed mean is a more representative estimate of the center of the body of the data. If the data is all from the same probability distribution, then the trimmed mean is less efficient than the sample average as an estimator of the location of the data.

Examples This example shows a M onte Carlo simulation of the relative efficiency of the \(10 \%\) trimmed mean to the sample average for normal data.
```

    x = normrnd(0,1,100,100);
    m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2
efficiency =

```
0.9702

\section*{See Also}

Purpose
Syntax
Description

Examples

\section*{Description}

Random numbers from Student's \(t\) distribution.
\[
\begin{aligned}
& \mathrm{R}=\operatorname{trnd}(\mathrm{V}) \\
& \mathrm{R}=\operatorname{trnd}(\mathrm{V}, \mathrm{~m}) \\
& \mathrm{R}=\operatorname{trnd}(\mathrm{V}, \mathrm{~m}, \mathrm{n})
\end{aligned}
\]
\(R=\operatorname{trnd}(\mathrm{V})\) generates random numbers from Student's \(t\) distribution with \(V\) degrees of freedom. The size of \(R\) is the size of \(V\).
\(R=\operatorname{trnd}(V, m)\) generates random numbers from Student's \(t\) distribution with V degrees of freedom. m is a 1-by-2 vector that contains the row and column dimensions of R .
\(R=t r n d(V, m, n)\) generates random numbers from Student's \(t\) distribution with \(v\) degrees of freedom. The scal ars \(m\) and \(n\) are the row and column dimensions of \(R\).
```

noisy = trnd(ones(1,6))
noisy =
19.7250 0.3488 0.2843 0.4034 0.4816 -2.4190
numbers = trnd(1:6,[1 6])
numbers =
-1.9500 -0.9611 -0.9038 0.0754 0.9820 1.0115
numbers = trnd(3,2,6)
numbers =

-0.3177	-0.0812	-0.6627	0.1905	-1.5585	-0.0433
0.2536	0.5502	0.8646	0.8060	-0.5216	0.0891

```

Purpose Mean and variance for the Student's t distribution.
Syntax \(\quad[M, V]=\) tstat \((N U)\)
Description F or the Student's \(t\) distribution with parameter, v:
- The mean is zero for values of \(v\) greater than 1 . If \(v\) is one, the mean does not exist.
- The variance, for values of \(v\) greater than 2 , is \(\frac{v}{v-2}\).

Examples The mean and variance for 1 to 30 degrees of freedom.
```

    [m,v] = tstat(reshape(1:30,6,5))
    m =
    | NaN | 0 | 0 | 0 | 0 |
| ---: | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

v =

NaN	1.4000	1.1818	1.1176	1.0870
NaN	1.3333	1.1667	1.1111	1.0833
3.0000	1.2857	1.1538	1.1053	1.0800
2.0000	1.2500	1.1429	1.1000	1.0769
1.6667	1.2222	1.1333	1.0952	1.0741
1.5000	1.2000	1.1250	1.0909	1.0714

```

N ote that the variance does not exist for one and two degrees of freedom.

Purpose
Hypothesis testing for a single sample mean.

\section*{Syntax \\ Description}
```

$h=t t e s t(x, m)$
h = ttest $(x, m, a l p h a)$
[h,sig,ci] = ttest(x,m,alpha,tail)

```

\section*{Example} deviation is unknown. the alpha level of significance.
[h,sig,ci] = ttest(x,m,alpha, tail) allows specification of one or two-tailed tests. tail is a flag that specifies one of three alternative hypotheses:
- tail \(=0\) (default) specifies the alternative, \(x \neq \mu\).
- tail \(=1\) specifies the alternative, \(x>\mu\).
- tail \(=-1\) specifies the alternative, \(x<\mu\).
sig is the p -value associated with the T -statistic.
\[
T=\frac{\bar{x}-\mu}{S}
\] chance under the null hypothesis that the mean of \(x\) is equal to \(\mu\).
ci is a 1-alpha confidence interval for the true mean.
ttest (\(x, m\)) performs a t-test at significance level 0.05 to determine whether a sample from a normal distribution (in x) could have mean m when the standard
\(h=t\) test \((x, m, a l p h a)\) gives control of the significance level, alpha. For exampleif alpha \(=0.01\), and the result, \(h\), is 1 you can reject the null hypothesis at the significance level 0.01 . If \(\mathrm{h}=0\), you cannot reject the null hypothesis at
sig is the probability that the observed value of T could be as large or larger by

This example generates 100 normal random numbers with theoretical mean zero and standard deviation one. The observed mean and standard deviation are different from their theoretical values, of course. We test the hypothesis that there is no true difference.

Normal random number generator test.
```

x = normrnd(0,1,1,100);
[h,sig,ci] = ttest(x,0)
h =
0
sig =
0.4474
ci =
-0.1165 0.2620

```

The result, \(\mathrm{h}=0\), means that we cannot reject the null hypothesis. The significance level is 0.4474 , which means that by chance we would have observed values of T more extreme than the one in this example in 45 of 100 similar experiments. A 95\% confidence interval on the mean is [-0.1165 0.2620], which includes the theoretical (and hypothesized) mean of zero.

\section*{Purpose}

Hypothesis testing for the difference in means of two samples.

\section*{Syntax \\ Description}
[h,significance,ci] = ttest2(x,y)
[h, significance, ci] = ttest2(\(x, y, a l p h a\))
[h,significance, ci] = ttest2(x,y,alpha,tail)

\section*{Examples}
\(h=\) ttest2 \((x, y)\) performs a t-test to determine whether two samples from a normal distribution (in \(x\) and \(y\)) could have the same mean when the standard deviations are unknown but assumed equal.
\(h\), the result, is 1 if you can reject the null hypothesis at the 0.05 significance level alpha and 0 otherwise.
significance is the \(p\)-value associated with the T-statistic.
\(T=\frac{x-y}{s}\)
significance is the probability that the observed value of \(T\) could be as large or larger by chance under the null hypothesis that the mean of \(x\) is equal to the mean of y .
ci is a \(95 \%\) confidence interval for the true difference in means.
[h,significance, ci] = ttest2(\(x, y\), alpha) gives control of the significance level, alpha. For example if alpha \(=0.01\), and the result, \(h\), is 1 , you can reject the null hypothesis at the significance level 0.01 . ci in this case is a 100(1-alpha)\% confidence interval for the true difference in means.
ttest2 (\(x, y\), alpha, tail) allows specification of one or two-tailed tests. tail is a flag that specifies one of three alternative hypotheses:
- tail \(=0\) (default) specifies the alternative, \(\mu_{\mathrm{x}} \neq \mu_{\mathrm{y}}\).
- tail \(=1\) specifies the alternative, \(\mu_{x}>\mu_{y}\).
- tail \(=-1\) specifies the alternative, \(\mu_{\mathrm{x}}<\mu_{\mathrm{y}}\).

This example generates 100 normal random numbers with theoretical mean zero and standard deviation one. We then generate 100 more normal random numbers with theoretical mean one half and standard deviation one. The observed means and standard deviations are different from their theoretical values, of course. We test the hypothesis that there is no true difference between the two means. Notice that the true difference is only one half of the
standard deviation of the individual observations, so we are trying to detect a signal that is only one half the size of the inherent noise in the process.
```

x = normrnd(0,1,100,1);
y = normrnd(0.5,1,100,1);
[h,significance,ci] = ttest2(x,y)
h =
1
significance =
0.0017
ci =
-0.7352 -0.1720

```

The result, \(\mathrm{h}=1\), means that we can reject the null hypothesis. The significance is 0.0017 , which means that by chance we would have observed values of \(t\) more extreme than the one in this example in only 17 of 10,000 similar experiments! A 95\% confidence interval on the mean is [-0.7352-0.1720], which includes thetheoretical (and hypothesized) difference of -0.5 .

\section*{Purpose}

\section*{Syntax}

Description

\section*{Examples}

Discrete uniform cumulative distribution (cdf) function.
\(P=\operatorname{unidcdf}(X, N)\)
unidcdf(\(\mathrm{X}, \mathrm{N}\)) computes the discrete uniform cdf with parameter settings N at the values in \(X\). The arguments \(X\) and \(N\) must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument.

The maximum observable value, N , is a positive integer.
The discrete uniform cdf is:
\[
p=F(x \mid N)=\frac{\operatorname{floor}(x)}{N} I_{(1, \ldots, N)}(x)
\]

The result, \(p\), is the probability that a single observation from the discrete uniform distribution with maximum, N , will be a positive integer less than or equal to \(x\). The values, \(x\), do not need to be integers.

What is the probability of drawing a number 20 or less from a hat with the numbers from 1 to 50 inside?
```

probability = unidcdf(20,50)
probability =
0.4000

```

Purpose

\section*{Syntax}

Description

\section*{Examples}
```

x = unidinv(0.7,20)
x =
14
y = unidinv(0.7 + eps,20)
y =

```

15
A small change in the first parameter produces a large jump in output. The cdf and its inverse are both step functions. The example shows what happens at a step.

\section*{Purpose}

\section*{Syntax}

Description

Discrete uniform probability density function (pdf).
\(Y=u n i d p d f(X, N)\)
unidpdf(\(X, N\)) computes thediscrete uniform pdf with parameter settings, \(N\), at the values in \(X\). The arguments \(X\) and \(N\) must be the same size except that a scalar argument functions as a constant matrix of the same size of the other argument.

The parameter N must be a positive integer.
The discrete uniform pdf is:
\[
y=f(x \mid N)=\frac{1}{N} I_{(1, \ldots, N)}(x)
\]

You can think of \(y\) as the probability of observing any one number between 1 and \(n\).

Examples For fixed n , the uniform discrete pdf is a constant.
\[
\begin{aligned}
& y=u n i d p d f(1: 6,10) \\
& y= \\
& 0.1000 \\
& 0.1000 \\
& 0.1000 \\
& 0.1000 \\
& 0.1000 \\
& 0.1000
\end{aligned}
\]

Now fix \(x\), and vary \(n\).
likelihood \(=\) unidpdf(5, 4:9)
likelihood =
0
0.2000
0.1667
0.1429
0.1250
0.1111

Purpose Random numbers from the discrete uniform distribution.
Syntax
\(R=\) unidrnd(\(N\))
\(R=\) unidrnd (\(N, m m\))
\(R=\) unidrnd(\(N, m m, n n\))

Description The discrete uniform distribution arises from experiments equivalent to drawing a number from one to \(N\) out of a hat.
\(R=\) unidrnd(\(N\)) generates discrete uniform random numbers with maximum,
\(N\). The size of \(R\) is the size of \(N\).
\(R=\) unidrnd(\(N, m m\)) generates discrete uniform random numbers with maximum, \(\mathrm{N} . \mathrm{mm}\) is a 1-by-2 vector that contains therow and column dimensions of \(R\).
\(R=\) unidrnd(\(N, m m, n n\)) generates discrete uniform random numbers with maximum, N . The scalars mm and nn are the row and column dimensions of R .

The parameter, N , must have positive integer elements.

\section*{Examples}

In the Massachusetts lottery a player chooses a four digit number. Generate random numbers for M onday through Saturday.
```

numbers = unidrnd(10000,1,6) - 1
numbers =
$2189 \quad 470 \quad 6788 \quad 6792 \quad 9346$

```

\section*{Purpose Mean and variance for the discrete uniform distribution.}

\section*{Syntax}

Description For the discrete uniform distribution:
- The mean is \(\frac{\mathrm{N}+1}{2}\).
- The variance is \(\frac{N^{2}-1}{12}\).

\section*{Examples}
[m,v] = unidstat(1:6)
\(\mathrm{m}=\)
\(\begin{array}{llllll}1.0000 & 1.5000 & 2.0000 & 2.5000 & 3.0000 & 3.5000\end{array}\)
v =
\(\begin{array}{llllll}0 & 0.2500 & 0.6667 & 1.2500 & 2.0000 & 2.9167\end{array}\)

\section*{unifcdf}

Purpose Continuous uniform cumulative distribution function (cdf).

\section*{Syntax}

Description

\section*{Examples}

What is the probability that an observation from a standard uniform distribution will be less than 0.75 ?
```

probability = unifcdf(0.75)
probability =
0.7500

```

What is the probability that an observation from a uniform distribution with \(\mathrm{a}=-1\) and \(\mathrm{b}=1\) will be less than 0.75 ?
```

probability = unifcdf(0.75,-1,1)
probability =
0.8750

```

\section*{Purpose \\ Inverse continuous uniform cumulative distribution function (cdf).}

\section*{Syntax}

Description

\section*{Examples}

What is the median of the standard uniform distribution?
```

median_value = unifinv(0.5)
median_value =
0.5000

```

What is the 99th percentile of the uniform distribution between -1 and 1 ?
percentile \(=\) unifinv(0.99,-1,1)
percentile =
0.9800

Purpose Parameter estimates for uniformly distributed data.
```

Syntax
[ahat,bhat] = unifit(X)
[ahat,bhat,ACI,BCI] = unifit(X)
[ahat,bhat,ACI,BCI] = unifit(X,alpha)

```

Description [ahat, bhat] = unifit(X) returns the maximum likelihood estimates (MLEs) of the parameters of the uniform distribution given the data in X .
[ahat, bhat, ACI , BCI] = unifit (X) also returns 95\% confidence intervals, ACI and BCI, which are matrices with two rows. The first row contains the lower bound of the interval for each column of the matrix, X . The second row contains the upper bound of the interval.
[ahat, bhat, \(\mathrm{ACI}, \mathrm{BCI}]=\) unifit(X , alpha) allows control of the confidence level alpha. For example, if alpha is 0.01 then ACI and BCI are \(99 \%\) confidence intervals.
```

Example $\quad r=$ unifrnd $(10,12,100,2)$;
[ahat,bhat,aci,bci] = unifit(r)
ahat =
$10.0154 \quad 10.0060$
bhat $=$
$11.9989 \quad 11.9743$
aci $=$
$9.9551 \quad 9.9461$
$10.0154 \quad 10.0060$
bci =
$11.9989 \quad 11.9743$
$12.0592 \quad 12.0341$

```

See Also
betafit, binofit, expfit, gamfit, normfit, poissfit, weibfit

\section*{Purpose Continuous uniform probability density function (pdf).}

\section*{Syntax}

Description

\section*{Examples}
\[
Y=\operatorname{unifpdf}(X, A, B)
\]
unifpdf(\(X, A, B\)) computes the continuous uniform pdf with parameters \(A\) and \(B\) at the values in \(X\). The arguments \(X, A\), and \(B\) must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameter B must be greater than A.
The continuous uniform distribution pdf is:
\[
y=f(x \mid a, b)=\frac{1}{b-a} l_{[a, b]}(x)
\]

The standard uniform distribution has \(\mathrm{A}=0\) and \(\mathrm{B}=1\).
For fixed \(a\) and \(b\), the uniform pdf is constant.
\[
\begin{aligned}
& x=0.1: 0.1: 0.6 \\
& y=\operatorname{unifpdf}(x) \\
& y=
\end{aligned}
\]
\begin{tabular}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

What if x is not between a and b ?
\[
\begin{aligned}
& y=\operatorname{unifpdf}(-1,0,1) \\
& y=
\end{aligned}
\]

0

\section*{unifrnd}

Purpose
Random numbers from the continuous uniform distribution.
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{unifrnd}(A, B)\) \\
& \(R=\operatorname{unifrnd}(A, B, m)\) \\
& \(R=\operatorname{uniffnd}(A, B, m, n)\)
\end{tabular}

Description

Examples
```

random = unifrnd(0,1:6)
random =
0.2190 0.0941 2.0366 2.7172 4.6735 2.3010
random = unifrnd(0,1:6,[1 6])
random =
0.5194 1.6619 0.1037 0.2138 2.6485 4.0269
random = unifrnd(0,1,2,3)
random =
0.0077 0.0668 0.6868
0.3834 0.4175 0.5890

```

Purpose

\section*{Syntax}

Description For the continuous uniform distribution:
- The mean is \(\frac{a+b}{2}\).
- The variance is \(\frac{(b-a)^{2}}{12}\).

\section*{Examples}

Mean and variance for the continuous uniform distribution.
[\(\mathrm{M}, \mathrm{V}]=\) unifstat \((\mathrm{A}, \mathrm{B})\)
```

a = 1:6;
b = 2.*a;
[m,v] = unifstat(a,b)
m =
1.5000 3.0000 4.5000 6.0000 7.5000 9.0000
v =
0.0833 0.3333 0.7500 1.3333 2.0833 3.0000

```

Purpose Variance of a sample.
Syntax \(\quad\)\begin{tabular}{l}
\(\mathrm{y}=\operatorname{var}(\mathrm{X})\) \\
\(\mathrm{y}=\operatorname{var}(\mathrm{X}, 1)\) \\
\(\mathrm{y}=\operatorname{var}(\mathrm{X}, \mathrm{w})\)
\end{tabular}

Description
\(\operatorname{var}(\mathrm{X})\) computes the variance of the data in X . For vectors, \(\operatorname{var}(\mathrm{x})\) is the variance of the elements in \(x\). For matrices, \(\operatorname{var}(X)\) is a row vector containing the variance of each column of \(x\).
\(\operatorname{var}(\mathrm{x})\) normalizes by \(\mathrm{n}-1\) where n is the sequence length. For normally distributed data, this makes \(\operatorname{var}(x)\) theminimum variance unbiased estimator MVUE of \(\sigma^{2}\) (the second parameter).
\(\operatorname{var}(x, 1)\) normalizes by \(n\) and yields the second moment of the sample data about its mean (moment of inertia).
\(\operatorname{var}(X, w)\) computes the variance using the vector of weights, \(w\). The number of elements in w must equal the number of rows in the matrix, \(x\). F or vector \(x, w\) and \(x\) must match in length. Each element of w must be positive.
var supports both common definitions of variance. Let SS be the sum of the squared deviations of the elements of a vector \(x\), from their mean. Then, \(\operatorname{var}(x)=S S /(n-1)\) the MVUE, and \(\operatorname{var}(x, 1)=S S / n\) the maximum likelihood estimator (MLE) of \(\sigma^{2}\).
Examples

\(x=\left[\begin{array}{ll}-1 & 1\end{array}\right] ;\)

\(w=\left[\begin{array}{ll}1 & 3\end{array}\right] ;\)

v1 \(=\operatorname{var}(x)\)

 v1 \(=\)
 2
\(\mathrm{v} 2=\operatorname{var}(\mathrm{x}, 1)\)
v2 =
 1
\(\mathrm{v} 3=\operatorname{var}(\mathrm{x}, \mathrm{w})\)
v3 =
 0.7500
See Also cov, std

Purpose Weibull cumulative distribution function (cdf).

\section*{Syntax \\ \[
P=\text { weibcdf }(X, A, B)
\] \\ \\ \(\mathrm{P}=\) weibcdf(\(\mathrm{X}, \mathrm{A}, \mathrm{B})\)} \\ \\ \(\mathrm{P}=\) weibcdf(\(\mathrm{X}, \mathrm{A}, \mathrm{B})\)}

Description
weibcdf (\(X, A, B\)) computes the Weibull cdf with parameters \(A\) and \(B\) at the values in X . The arguments \(\mathrm{X}, \mathrm{A}\), and B must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

Parameters A and B are positive.
The Weibull cdf is:
\[
\mathrm{p}=\mathrm{F}(\mathrm{x} \mid \mathrm{a}, \mathrm{~b})=\int_{0}^{\mathrm{x}} \mathrm{abt}^{\mathrm{b}-1} \mathrm{e}^{-\mathrm{at}}{ }^{\mathrm{b}} d \mathrm{t}=1-\mathrm{e}^{-\mathrm{ax}} \mathrm{I}_{(0, \infty)}(\mathrm{x})
\]

\section*{Examples}

What is the probability that a value from a Weibull distribution with parameters \(\mathrm{a}=0.15\) and \(\mathrm{b}=0.24\) is less than 500 ?
```

probability = weibcdf(500,0.15,0.24)
probability =
0.4865

```

How sensitive is this result to small changes in the parameters?
```

[A,B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = weibcdf(500,A,B)
probability =

```
\begin{tabular}{lll}
0.2929 & 0.4054 & 0.5000 \\
0.3768 & 0.5080 & 0.6116 \\
0.4754 & 0.6201 & 0.7248
\end{tabular}

Purpose
Parameter estimates and confidence intervals for Weibull data.

\section*{Example}
```

r = weibrnd(0.5,0.8,100,1);
[phat,pci] = weibfit(r)
phat =
0.4746 0.7832
pci =
0.3851 0.6367
0.5641 0.9298

```
See Also betafit, binofit, expfit, gamfit, normfit, poissfit, unifit

\section*{weibinv}

\section*{Purpose Inverse of the Weibull cumulative distribution function.}

\section*{Syntax \\ \(X\) = weibinv (P, A, B)}

Description
weibinv (\(\mathrm{P}, \mathrm{A}, \mathrm{B}\)) computes the inverse of the Weibull cdf with parameters A and \(B\) for the probabilities in \(P\). The arguments \(P, A\) and \(B\) must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

The parameters \(A\) and \(B\) must be positive.
The inverse of the Weibull cdf is:
\[
x=F^{-1}(p \mid a, b)=\left[\frac{1}{a} \ln \left(\frac{1}{1-p}\right)\right]^{\frac{1}{b}} I_{[0,1]}(p)
\]

Examples A batch of light bulbs have lifetimes (in hours) distributed Weibull with parameters \(a=0.15\) and \(b=0.24\). What is the median lifetime of the bulbs?
```

life = weibinv(0.5,0.15,0.24)
life =

```
588.4721

What is the 90th percentile?
```

life = weibinv(0.9,0.15,0.24)
life =
8.7536e+04

```

\section*{Purpose \\ Weibull negative log-likelihood function.}

\section*{Syntax \\ logL = weiblike(params,data) \\ [logL,info] = weiblike(params,data)}

\section*{Description}

\section*{Example}

\section*{Reference}

\section*{See Also}
logL = weiblike(params, data) returns the Weibull log-likelihood with parameters params (1) \(=\mathrm{a}\) and params (2) \(=\mathrm{b}\) given the data, \(\mathrm{x}_{i}\).
[logL,info] = weiblike(params,data) adds Fisher's information matrix, info. The diagonal elements of INFO are the asymptotic variances of their respective parameters.

The Weibull negative log-likelihood is:
\[
-\log L=-\log \prod_{i=1} f\left(a, b \mid x_{i}\right)=-\sum_{i=1}^{n} \log f\left(a, b \mid x_{i}\right)
\]
weiblike is a utility function for maximum likelihood estimation.
Continuing the example for weibfit:
```

r = weibrnd(0.5,0.8,100,1);
[logL,info] = weiblike([0.4746 0.7832],r)
logL =
203.8216
info =
0.0021 0.0022
0.0022 0.0056

```

Patel, J. K., C. H. Kapadia, and D. B. Owen, Handbook of Statistical Distributions, Marcel-Dekker, 1976.

\section*{weibpdf}

\section*{Purpose \\ Weibull probability density function (pdf).}

\section*{Syntax}

Description

\section*{Examples}

\section*{Reference \\ Devroye, L., Non-Uniform Random VariateGeneration. Springer-Verlag. New Y ork, 1986.}

Y = weibpdf(X,A,B)
weibpdf(\(X, A, B\)) computes the Weibull pdf with parameters \(A\) and \(B\) at the values in \(X\). The arguments \(X, A\) and \(B\) must all be the same size except that scalar arguments function as constant matrices of the common size of the other arguments.

Parameters A and B are positive.
The Weibull pdf is:
\[
y=f(x \mid a, b)=a b x^{b-1} e^{-a x^{b}} I_{(0, \infty)}(x)
\]

Some references refer to theWeibull distribution with a single parameter. This corresponds to weibpdf with A \(=1\).

The exponential distribution is a special case of the Weibull distribution.
```

lambda = 1:6;
y = weibpdf(0.1:0.1:0.6,lambda,1)
y =
0.9048 1.3406 1.2197 0.8076 0.4104 0.1639
y1 = exppdf(0.1:0.1:0.6,1./lambda)
y1 =

0.9048	1.3406	1.2197	0.8076	0.4104	0.1639

```

\section*{Purpose \\ Weibull probability plot.}

\section*{Syntax \\ weibplot(X) h = weibplot(X)}

\section*{Description}
weibplot (X) displays a Weibull probability plot of the data in X . If X is a matrix, weibplot displays a plot for each column.
\(h=\) weibplot(X) returns handles to the plotted lines.
The purpose of a Weibull probability plot is to graphically assess whether the data in X could come from a Weibull distribution. If the data are Weibull the plot will be linear. Other distribution types may introduce curvature in the plot.

\section*{Example}

See Also normplot

\section*{Purpose \\ Random numbers from the Weibull distribution.}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\) weibrnd \((A, B)\) \\
\(R\) & \(=\) weibrnd \((A, B, m)\) \\
\(R\) & \(=\) weibrnd \((A, B, m, n)\)
\end{tabular}

Description \(\quad R=\) weibrnd \((A, B)\) generates Weibull random numbers with parameters \(A\) and \(B\). The size of \(R\) is the common size of \(A\) and \(B\) if both are matrices. If either parameter is a scalar, the size of \(R\) is the size of the other parameter.
\(R=\) weibrnd \((A, B, m)\) generates Weibull random numbers with parameters \(A\) and \(B . m\) is a 1-by- 2 vector that contains the row and column dimensions of \(R\).
\(R=\) weibrnd \((A, B, m, n)\) generates Weibull random numbers with parameters \(A\) and \(B\). The scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

Devroye refers to the Weibull distribution with a single parameter; this is weibrnd with \(\mathrm{A}=1\).

\section*{Examples}
```

n1 = weibrnd(0.5:0.5:2,0.5:0.5:2)
n1 =
0.0093 1.5189 0.8308 0.7541
n2 = weibrnd(1/2,1/2,[1 6])
n2 =

```
\begin{tabular}{llllll}
29.7822 & 0.9359 & 2.1477 & 12.6402 & 0.0050 & 0.0121
\end{tabular}

\footnotetext{
Reference Devroye, L., Non-Uniform Random Variate Generation. Springer-Verlag. New York, 1986.
}

\section*{Purpose Mean and variance for the Weibull distribution.}

\section*{Syntax \\ [M,V] = weibstat(A,B)}

Description For the Weibull distribution:
- The mean is:
\(a^{-\frac{1}{5}} \Gamma\left(1+b^{-1}\right)\)
- The variance is:
\[
a^{-\frac{2}{b}}\left[\Gamma\left(1+2 b^{-1}\right)-\Gamma^{2}\left(1+b^{-1}\right)\right]
\]

Examples
```

[m,v] = weibstat(1:4,1:4)
m =
1.0000 0.6267 0.6192 0.6409
v =
1.0000
0.1073 0.0506
0.0323
weibstat(0.5,0.7)
ans =
3.4073

```

\section*{\(\mathbf{x 2 f x}\)}

Purpose Transform a factor settings matrix to a design matrix.
Syntax
D \(=x 2 f x(X)\)
D = x2fx(x,'model')

Description

Example

See Also

Let \(x_{1}\) be the first column of \(x\) and \(x_{2}\) be the second. Then, the first column of \(D\) is for the constant term. The second column is \(x_{1}\). The 3rd column is \(x_{2}\). The 4th is \(\mathrm{x}_{1} \mathrm{x}_{2}\). The fifth is \(\mathrm{x}_{1}{ }^{2}\) and the last is \(\mathrm{x}_{2}{ }^{2}\).
Alternatively, the argument, model, can be a matrix of terms. In this case each row of model represents one term. The value in a column is the exponent to raise the same column in x for that term. This allows for models with polynomial terms of arbitrary order.
x2fx is a utility function for rstool, regstats and cordexch.
\[
\begin{aligned}
& \text { x = [1 } 2 \text { 3;4 5 6]'; model = 'quadratic'; } \\
& \text { D }=\text { x2fx(x,model) } \\
& \text { D = }
\end{aligned}
\]

\footnotetext{
rstool, cordexch, rowexch, regstats
}

\section*{Purpose X-bar chart for Statistical Process Control.}

\section*{Syntax \\ Description}

Example
```

xbarplot(DATA)
xbarplot(DATA,conf)
xbarplot(DATA,conf,specs)
[outlier,h] = xbarplot(...)

```
xbarplot (DATA) displays an x-bar chart of the grouped responses in DATA. The rows of DATA contain replicate observations taken at a given time. The rows must be in time order. The upper and lower control limits area \(99 \%\) confidence interval on a new observation from the process. So, roughly 99\% of the plotted points should fall between the control limits.
xbarplot (DATA, conf) allows control of the the confidence level of the upper and lower plotted confidence limits. F or example, conf \(=0.95\) plots \(95 \%\) confidence intervals.
xbarplot (DATA, conf, specs) plots the specification limits in the two element vector, specs.
[outlier,h] = xbarplot(DATA, conf,specs) returns outlier, a vector of indices to the rows where the mean of DATA is out of control, and \(h\), a vector of handles to the plotted lines.

Plot an x-bar chart of measurements on newly machined parts, taken at one hour intervals for 36 hours. E ach row of the runout matrix contains the measurements for four parts chosen at random. The values indicate, in

\section*{xbarplot}
thousandths of an inch, the amount the part radius differs from the target radius.
load parts
xbarplot(runout, 0.999,[-0.5 0.5])

\section*{See Also}
capaplot, histfit, ewmaplot, schart

\section*{Purpose Standardized Z score.}

\section*{Syntax \\ Z = zscore(D)}

Description \(\quad Z=z s c o r e(D)\) returns the deviation of each column of \(D\) from its mean, normalized by its standard deviation. This is known as the \(Z\) score of \(D\).

For column vector \(\mathrm{V}, \mathrm{Z}\) score is \(\mathrm{Z}=(\mathrm{V}\)-mean(V))./std(V)

Purpose Hypothesis testing for the mean of one sample with known variance.
```

Syntax $\quad h=$ ztest $(x, m$, sigma $)$
h = ztest(x,m,sigma,alpha)
[h,sig,ci] = ztest(x,m,sigma,alpha,tail)

```

Description \(\quad z t e s t(x, m\), sigma) performs a \(Z\) test at significance level 0.05 to determine whether a sample from a normal distribution (in \(x\)) could have mean \(m\) and standard deviation, sigma.
h = ztest(x,m, sigma, alpha) gives control of the significancelevel, alpha. For example if alpha \(=0.01\), and the result, h , is 1 you can reject the null hypothesis at the significance level 0.01. If \(\mathrm{h}=0\), you cannot reject the null hypothesis at the alpha level of significance.
[h,sig,ci] = ztest(x,m,sigma,alpha,tail) allows specification of one or two-tailed tests. tail is a flag that specifies one of three alternative hypotheses:
- tail \(=0\) (default) specifies the alternative, \(x \neq \mu\).
- tail \(=1\) specifies the alternative, \(x>\mu\).
- tail \(=-1\) specifies the alternative, \(x<\mu\).
sig is the \(p\)-value associated with the \(Z\) statistic. \(z=\frac{x-\mu}{\sigma}\)
sig is the probability that the observed value of \(Z\) could be as large or Iarger by chance under the null hypothesis that the mean of \(x\) is equal to \(\mu\).
ci is a 1-alpha confidence interval for the true mean.

\section*{Example}

This example generates 100 normal random numbers with theoretical mean zero and standard deviation one. The observed mean and standard deviation
are different from their theoretical values, of course. We test the hypothesis that there is no true difference.
```

x = normrnd(0,1,100,1);
m = mean(x)
m =
0.0727
[h,sig,ci] = ztest(x,0,1)
h =
0
sig =
0.4669
Ci =
-0.1232 0.2687

```

The result, \(\mathrm{h}=0\), means that we cannot reject the null hypothesis. The significance level is 0.4669 , which means that by chance we would have observed values of \(Z\) more extreme than the one in this example in 47 of 100 similar experiments. A 95\% confidence interval on the mean is [-0.1232 0.2687], which includes the theoretical (and hypothesized) mean of zero.

\section*{A}
absolute deviation 1-44
additive 1-67
alternative hypothesis 1-85
analysis of variance 1-24
ANOVA 1-65
anova1 2-12, 2-16
anova2 2-12, 2-20
average linkage 2-121

\section*{B}
bacteria counts 1-65
barttest 2-13
baseball odds 2-31, 2-33
Bernoulli random variables 2-35
beta distribution 1-12, 1-13
betacdf 2-3, 2-24
betafit 2-3, 2-25
betainv 2-5, 2-26
betalike 2-3, 2-27
betapdf 2-4, 2-28
betarnd 2-6, 2-29
betastat 2-8, 2-30
binocdf 2-3, 2-31
binofit 2-3, 2-32
binoinv 2-5, 2-33
binomial distribution 1-12, 1-15
binopdf 2-4, 2-34
binornd 2-6, 2-35
binostat 2-8, 2-36
bootstrap 2-37
bootstrap sampling 1-47
box plots 1-103
boxplot 2-10, 2-39

\section*{C}
capability studies 1-113
capable 2-11, 2-41
capaplot 2-11
caseread 2-14, 2-44
casewrite 2-14, 2-45
cdf 1-6, 1-7
cdf 2-3, 2-46
census 2-14
Central Limit Theorem 1-31
centroid linkage 2-121
Chatterjee and Hadi example 1-72
chi2cdf 2-3, 2-47
chi2inv 2-5, 2-48
chi2pdf 2-4, 2-49
chi2rnd 2-6, 2-50
chi2stat 2-8, 2-51
chi-square distribution 1-12, 1-17
circuit boards 2-34
cities 2-14
City Block metric
in cluster analysis 2-179
classify 2-52
cluster 2-11, 2-53
cluster analysis 1-50
computing inconsistency coefficient 1-57, 2-115
creating clusters from data 2-55
creating clusters from linkage output 1-61, 2-53
creating the cluster tree 1-53, 2-120
determining proximity 1-51, 2-178
evaluating cluster formation 1-56, 2-58
formatting distance information 1-53, 2-221
overview 1-50
plotting the cluster tree 1-55, 2-65
clusterdata 2-11, 2-55
coin 2-95
combnk 2-57
compl ete linkage 2-121
confidence intervals
hypothesis tests 1-86
nonlinear regression 1-82
control charts 1-110
EWMA charts 1-112
S charts 1-111
Xbar charts 1-110
cophenet 2-11, 2-58
using 1-56
cophenetic correlation coefficient 2-58
defined 1-56
cordexch 2-13, 2-59
corrcoef 2-60
cov 2-61
Cp index 1-114, 2-41
Cpk index 1-114, 2-41
crosstab 2-62
cumulative distribution function (cdf) 1-6

\section*{D}
data 2-2
daugment 2-13, 2-63
dcovary 2-13, 2-64
demos 1-125, 2-2
design of experiments 1-131
polynomial curve fitting 1-126
probability distributions 1-125
random number generation 1-130
dendrogram 2-11, 2-65
using 1-55
depth
in cluster analysis 1-59
descriptive 2-2
descriptive statistics 1-42
Design of Experiments 1-115
D-optimal designs 1-118
fractional factorial designs 1-117
full factorial designs 1-116
discrete uniform distribution 1-12, 1-20
discrim 2-14
dissimilarity matrix creating 1-51
distributions 1-2, 1-5
disttool 2-14, 2-68
DOE. SeDesign of Experiments
D-optimal designs 1-118
dummyvar 2-69

\section*{E}
erf 1-31
error function 1-31
errorbar 2-10, 2-70
estimate 1-128
Euclidean distance
in cluster analysis 2-179
EWMA charts 1-112
ewmaplot 2-11, 2-71
expcdf 2-3, 2-73
expfit 2-3, 2-74
expinv 2-5, 2-75
exponential distribution 1-12, 1-21
exppdf 2-4, 2-76
exprnd 2-6, 2-77
expstat 2-8, 2-78
extrapolated 2-194

\section*{F}

F distribution 1-12, 1-23
F statistic 1-72
fcdf 2-3, 2-79
ff2n 2-13, 2-80
file i/o 2-2
finv 2-5, 2-81
floppy disks 2-109
fpdf 2-4, 2-82
fractional factorial designs 1-117
frnd 2-6, 2-83
fstat 2-8, 2-84
fsurfht 2-10, 2-85
full factorial designs 1-116
fullfact 2-13, 2-87
furthest neighbor linkage 2-121

\section*{G}
gamcdf 2-3, 2-88
gamfit 2-3, 2-89
gaminv 2-5, 2-90
gamlike 2-3, 2-91
gamma distribution 1-12, 1-25
gampdf 2-4, 2-92
gamrnd 2-6, 2-93
gamstat 2-8, 2-94
gas 2-14
Gaussian 2-106
geocdf 2-3, 2-95
geoinv 2-5, 2-96
geomean 2-9, 2-97
geometric distribution 1-12, 1-27
geopdf 2-4, 2-98
geornd 2-7, 2-99
geostat 2-8, 2-100
gline 2-10, 2-101
gname 2-10, 2-102
grpstats 2-104
Guinness beer 1-36, 2-229

\section*{H}
hadamard 2-13
hald 2-14
harmmean 2-9, 2-105
hat matrix 1-70
hist 2-106
histfit 2-11, 2-107
histogram 1-130
hogg 2-14
Hotelling's T squared 1-102
hougen 2-108
Hougen-Watson model 1-79
hygecdf 2-3, 2-109
hygeinv 2-6, 2-110
hygepdf 2-4, 2-111
hygernd 2-7, 2-112
hygestat 2-8, 2-113
hypergeometric distribution 1-12, 1-28
hypotheses 1-24, 2-2
hypothesis tests 1-85

\section*{I}
icdf 2-114
incomplete beta function 1-13
incomplete gamma function 1-25
inconsistency coefficient 1-58
inconsistent 2-11, 2-115
using 1-58
inspector 2-182
integral equation 2-26
interaction 1-67
interpolated 2-224
interquartile range (iqr) 1-44
inverse cdf 1-6, 1-7
iqr 2-9, 2-117

\section*{K}
kurtosis 2-9, 2-118

\section*{L}
lawdata 2-14
least-squares 2-189
leverage 2-119
light bulbs, life of 2-75
likelihood function 2-28
linear 2-2
linear models 1-65
linkage 2-11, 2-120
using 1-53
logncdf 2-4, 2-123
logninv 2-6, 2-124
lognormal distribution 1-13, 1-29
lognpdf 2-5, 2-125
lognrnd 2-7, 2-126
lognstat 2-8, 2-127
lottery 2-242
lsline 2-10, 2-128
LU factorizations 2-188

\section*{M}
mad 2-9, 2-129
mahal 2-130
Mahalanobis distance 2-130
in cluster analysis 2-179
mean 1-6, 1-11
mean 2-9, 2-131
Mean Squares (MS) 2-16
measures of central tendency 1-42
measures of dispersion 1-43
median 2-9, 2-132
mileage 2-14
Minkowski metric
in cluster analysis 2-179
mle 2-3, 2-133
models
linear 1-65
nonlinear 1-79
moment 2-9, 2-134
Monte Carlo simulation 2-117
moore 2-15
multiple linear regression 1-69
multivariate statistics 1-91
mvnrnd 2-135

\section*{N}
nanmax 2-9, 2-136
nanmean 2-9, 2-137
nanmedian 2-9, 2-138
nanmin 2-9, 2-139
NaNs 1-45
nanstd 2-9, 2-140
nansum 2-9, 2-141
nbincdf 2-4, 2-142
nbininv 2-6, 2-143
nbinpdf 2-5, 2-144
nbinrnd 2-7, 2-145
nbinstat 2-8, 2-146
ncfcdf 2-4, 2-147
ncfinv 2-6, 2-148
ncfpdf 2-5, 2-149
ncfrnd 2-7, 2-150
ncfstat 2-8, 2-151
nctcdf 2-4, 2-152
nctinv 2-6, 2-153
nctpdf 2-5, 2-154
nctrnd 2-7, 2-155
nctstat 2-8, 2-156
ncx2cdf 2-4, 2-157
ncx2inv 2-6, 2-158
ncx2pdf 2-5, 2-159
ncx2rnd 2-7, 2-160
ncx2stat 2-8, 2-161
nearest neighbor linkage 2-121
negative binomial distribution 1-13, 1-30
Newton's method 2-90
nlinfit 2-12, 2-162
nlintool 2-12, 2-163
nlparci 2-12, 2-164
nlpredci 2-12, 2-165
noncentral chi-square distribution 1-12
noncentral \(F\) distribution 1-12, 1-24
noncentral t distribution 1-13, 1-37
nonlinear 2-2
nonlinear regression models 1-79
normal distribution 1-13, 1-31
normal probability plots 1-103, 1-104
normalizing a dataset 1-51
using zscore 2-263
normcdf 2-4, 2-166
normdemo 2-11, 2-172
normfit 2-3, 2-167
norminv 2-6, 2-168
normlike 2-3
normpdf 2-5, 2-169
normplot 2-10, 2-170
normrnd 2-7, 2-171
normstat 2-8, 2-173
notches 2-39
null 1-85
null hypothesis 1-85

\section*{0}
one-way analysis of variance (ANOVA) 1-65
outliers 1-42

\section*{P}
pareto 2-10, 2-174
parts 2-15
Pascal, Blaise 1-15
PCA. SeePrincipal Components Analysis
pcacov 2-13, 2-175
pcares 2-13, 2-176
pdf 1-6
pdf 2-177
pdist 2-11, 2-178
using 1-51
percentiles 1-46
perms 2-181
plots 1-46, 2-2
poisscdf 2-4, 2-182
poissfit 2-3, 2-183
poissinv 2-6, 2-184
Poisson distribution 1-13, 1-33
poisspdf 2-5, 2-185
poissrnd 2-7, 2-186
poisstat 2-8, 2-187
polyconf 2-12, 2-188
polydata 2-15
polyfit 2-12, 2-189
polynomial 1-126
polytool 1-125, 2-14, 2-190
polyval 2-12, 2-191
popcorn 2-21
popcorn 2-15
prctile 2-9, 2-192
Principal Components Analysis 1-91
component scores 1-95
component variances 1-99
Hotelling's T squared 1-102
Scree plot 1-101
princomp 2-13, 2-193
probability 2-2
probability density function (pdf) 1-6
probability distributions 1-5
p-value 1-69, 1-86

\section*{Q}
qqplot 2-10, 2-194
QR decomposition 1-70
quality assurance 2-34
quantile-quantile plots 1-103, 1-106

\section*{R}
random 2-195
random number generator 1-6
random numbers 1-9
randtool 1-125, 2-14, 2-68, 2-196
range 2-9, 2-197
ranksum 2-13, 2-198
raylcdf 2-4, 2-199
Rayleigh distribution 1-13
raylinv 2-6, 2-200
raylpdf 2-5, 2-201
raylrnd 2-7, 2-202
raylstat 2-8, 2-203
rcoplot 2-10, 2-204
reaction 2-15
refcurve 2-10, 2-205
reference lines 1-125
references 1-134
refline 2-10, 2-206
regress 2-12, 2-207
regression 1-24
nonlinear 1-79
stepwise 1-75
regstats 2-209
relative efficiency 2-117
residuals 1-73
Response Surface M ethodology (RSM) 1-73
ridge 2-12, 2-211
robust 1-42
robust linear fit 2-194
rowexch 2-13, 2-213
rsmdemo 1-125, 2-14, 2-214
R-square 1-72
rstool 2-12, 2-215

\section*{S}

S charts 1-111
sat 2-15
schart 2-11, 2-216
Scree plot 1-101
segmentation analysis 1-50
significance level 1-85
signrank 2-13, 2-218
signtest 2-13, 2-219
similarity matrix
creating 1-51
simulation 2-117
single linkage 2-121
skewness 1-103
skewness 2-9, 2-220
SPC. Se Statistical Process Control
squareform 2-11, 2-221
standard normal 2-169
Standardized Euclidean distance in cluster analysis 2-179
statdemo 2-14, 2-221
statistical plots 1-103
Statistical Process Control
capability studies 1-113
control charts 1-110
statistical references 1-134
statistically significant 2-16
std 2-9, 2-221
stepwise 2-12, 2-223
stepwise regression 1-75
Sum of Squares (SS) 2-16
surfht 2-10, 2-224
symmetric 2-88

\section*{T}
t distribution 1-13, 1-36
tabulate 2-225
taxonomy analysis 1-50
tblread 2-14, 2-226
tblwrite 2-14, 2-228
tcdf 2-4, 2-229
tinv 2-6, 2-230
tpdf 2-5, 2-231
trimmean 2-9, 2-232
trnd 2-7, 2-233
tstat 2-8, 2-234
ttest 2-13, 2-235
ttest2 2-13, 2-237
two-way ANOVA 1-67

\section*{U}
unbiased 2-222, 2-250
unidcdf 2-4, 2-239
unidinv 2-6, 2-240
unidpdf 2-5, 2-241
unidrnd 2-7, 2-242
unidstat 2-8, 2-243
unifcdf 2-4, 2-244
unifinv 2-6, 2-245
unifit 2-3, 2-246
uniform distribution 1-13, 1-38
unifpdf 2-5, 2-247
unifrnd 2-7, 2-248
unifstat 2-8, 2-249

\section*{V}
var 2-9, 2-250
variance 1-6, 1-11

\section*{W}
ward linkage 2-122
weibcdf 2-4, 2-252
weibfit 2-253
weibinv 2-6, 2-254
weiblike 2-255
weibpdf 2-5, 2-256
weibplot 2-10, 2-257
weibrnd 2-7, 2-258
weibstat 2-8, 2-259
Weibull distribution 1-13, 1-39
Weibull probability plots 1-108
Weibull, Waloddi 1-39
whiskers 1-103, 2-39

\section*{X}
x2fx 2-260

Xbar charts 1-110
xbarplot 2-11, 2-261

\section*{Z}
zscore 2-263
ztest 2-13, 2-264```

[^0]: Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second Edition, J ohn Wiley and Sons, 1993. p. 102-105.

 See Also

[^1]: See Also
 kurtosis, mean, skewness, std, var

[^2]: nbincdf, nbininv, nbinrnd, nbinstat, pdf

