Tens Picosenconds Digital ASIC Time To Digital Converter for Phisics Experiments stefano russo

LPNHE, Electronics group 9/03/2012

Outline

- Why a time measure?
- Different TDCs
- The TEMPO TDC
- A first version @ 180nm
 The final chip @ 90nm

Why a time measure?

Time To Digital Converters (TDC) are widely used in many different fields

Physics experiments

• Time Of Flight

•

- Positron Emission Tomography (PET)
- Laser applications

Applied Electronics

- All digital frequency synthesis
- GFSK transceivers (frequency modulators)
- On chip test structures

All Digital TDC

Many different schemes to implement a TDC (both analogic and digital)

Digital Scheme

- More performances on Avaliable Technologies
- Easy to port design in different tech
- Performances scale almost linearly with tech

How to design a TDC

To have a good resolution on a wide dynamic range a synchronous counter and asynchronous fine interpolator are realized

The fine measure

There are many different schemes to design the fine interpolator

Vernier Based

The time interval is compared to a fixed time scale (like a caliper)

Direct Measure

The time interval in measured in terms of a fixed quantity (like a meter)

Vernier Based design examples τ2 ≠ τ1

Direct Measure design

Resolution = tinv

Which inverter?

In a direct measure scheme the inverter design is the key element to achieve a good resolution

CMOS inverter (static)

The inverter delay optimization is a tradeoff between:

- MOS dimensions
- parasitic C
- rise fall time

Which inverter?

NORA inverter (dynamic)

NORA Logic pros & cons

PRO

 - speed (Eval parasites are not on the signal path)
 - TH2L ≠ TL2H

CONs

-

- Many signals
 - TH2L ≠ TL2H

NORA vs. CMOS

To evaluate the performances a comparative simulations was performed @ 180nm

The TEMPO scheme

- High resolution
- Reduced dead time
 - Low power

Inverters in the fine interpolator are designed using NORA logic

The TEMPO scheme

A first chip @ 180nm (UMC)

To validate our scheme a first version was realized

Full custom design for delay lines

TDC1 measure the time between START & Stop

TDC2 measure a clock period (calibration)

A first chip @ 180nm Experimental Results

Max Integral Non Linearity 0.75 LSB

A first chip @ 180nm Experimental Results

Single shot precision histograms

Single shot precision temperature dependence

NORA vs. CMOS @ 90nm

Start 0.6 0.2 -0.2 1.2 1.3 1.5 1.1 1.4 ns 1 287ps CMOS 0.6 0.2 -0.2 1.2 1.3 1.1 1.5 1.4 ns 2nd 22nd inverter [•] inverter 1 NORA 200ps 0.6 0.2 -0.2 1.1 1.2 1.3 1.4 1.5 ns

NORA is 29% Faster than CMOS

The TEMPO Differential scheme

The delay element compute two differential outputs.

The output is stabilized by the latch and acquired by a Strong Arm FF

A second chip @ 90nm (UMC)

In the second chip the differential scheme was implemented

Full custom

design for

delay lines

TDC1 measure the time between START & Stop

TDC2 measure a clock period (calibration)

Measured resolution 25 ps over 10.6 µs

A second chip @ 90nm Experimental Results

Experimental Results Summary

Technology	Resolution	Range	Area	Power	INL	DNL
180nm	41ps	18µs	0.09mm	25mW	0.77LSB	0.35LSB
90nm	25ps	10.6µs	0.1mm	19mW	0.65LSB	0.35LSB