## **Summary Talk**



## **Disclaimer**

- Probably, this is not much of a summary ...
- Many interesting talks
  - I cannot claim to have understood everything
  - but I have learned at least something
- I will present some interesting aspects of the w/s
- Apologies if I missed something important, or if my selection does not match yours

# A Comment on "Old Physics"

 I will be happy if the physics we are studying continues to be so interesting in 20-30 years time

## Focus of the workshop

- We focus on three body charmless B decays, and mostly three body hadronic charmless B decays
- Also touching on
  - semileptonic decays
  - radiative decays
  - charm and charmonium decays
  - scattering processes
  - etc, ...

## Why Do We Need Three Body Decays?

- We have not succeeded to answer all questions about CKM and heavy quark theory with two body decays
- Three body decays allow additional observables
- Some progress already experimentally, and also (very recently) theoretically
- Also can address some open questions in hadronic physics

## The Quark Model

Meson nonet - flavour SU(3)



## "Natural" quantum numbers



### The Scalar Sector

 $J^P = 0^+$  is also possible in QCD



widths  $>\sim O(100 \text{ MeV})$ 

- Easy (?) to identify a isovector as a (980)
- If f<sub>0</sub>(980) has large ss component, tempting to identify it as "f<sub>0</sub>"
  - there should (?) be a lower lying (?) isoscalar  $f_0$  (= $\sigma$ )
- Lowest "well-identified" kaonic scalar is K<sub>0</sub>\*(1430)
  - mass too high to fit into this scheme?

### Problems in the scalar sector

- Other states are also possible in QCD
  - gluonia
  - four quark states (diquark antidiquark)
  - hybrids
  - other exotic possibilities
- What, and where, if they exist, are the σ and κ?
- How can we interpret extremely broad structures?
- (Axial-vector sector OK?)

### What is a resonance?

- a bump or a dip
- a would-be bound-state
- a Breit-Wigner
- a relativistic Breit-Wigner
- a pole

### How can we treat them?

- Isobar model
  - problems with unitarity for overlapping resonances
- Coupled channel (Flatte)
- K-matrix
- GDA

• ...

Can B Factory Help.?



- Example from charmed B decays
- Belle, PRD 69 (2004) 112002







## Watson's Theorem

- Allows us to relate spectra from various different processes
  - various hadronic B decays
  - various hadronic D decays
  - radiative B decays
  - semileptonic B and D decays
  - charmonia decays (ISR or 2γ processes)
  - low energy scattering
- Limits to validity
  - elastic regime
  - other bodies in final state factorize (good for γ or Iv)



# Relevance of LASS Results to B-Factory Analyses (?)

Bill Dunwoodie (SLAC)

For the LASS Collaboration: SLAC – Nagoya – Cincinnati – INS Tokyo (Cal. Tech – Johns Hopkins – Carleton)

LASS BaBar refugees:

David Leith, Blair Ratcliff, Dave Aston, Jaroslav Va'vra, WMD (SLAC), Brian Meadows (Cincinnati)

Workshop on 3-Body Charmless B Decays

LPHNE, Paris

Feb. 1-3, 2006

## B decay phase space

- B mesons heavy compared to light mesons
  - Dalitz plots are large
  - invariant masses go up to ~ 5 GeV
    - "well understood" region up to ~ 2 GeV?
- Are there any events in the middle of the DP?
  - Yes, sometimes
  - How can we understand them?



# Description at "High" Invariant Masses

### Kπ P-wave

#### **Amplitude** Mass = 896.1 MeV 0.8 Width = 50.7 MeV3.0 GeV<sup>-1</sup> 0.6 0.4 0.2 0.75 1.00 1.50 1.75 2.00 1.25 Mass[K pi] GeV

### ππ P-wave



## **How Do We Proceed?**

- No Dalitz plot is an island
  - results from each interplay with each other
  - resonances can decay to different final states
- Communication is essential
  - between different analyists
  - different subgroups within an experiment
  - different experiments
  - experiment and theorists
- Small workshops like this are ideal for this purpose!

## The Message

Try to look beyond a single channel ...



# The Message

The bigger picture is much more beautiful!



# Let's thank the organisers

