What Would We Like To Measure at B Factories?

What Would We Like To Measure at B Factories?

(personal, and incomplete opinions)

- The old answer
- The current status
- New answers
- Three-Body Charmless B Decays

The CKM Matrix

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

There are (exactly) three families of quarks 3x3 unitary mixing matrix => one phase

The Unitarity Triangle

 Convenient method to illustrate (dis-)agreement of observables with CKM prediction

Predictive Nature of KM Mechanism

The Wolfenstein Parametrization

Hierarchy in quark mixing

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}\left(\lambda^4\right)$$

Note also: hierarchy in quark masses

The Strong Interaction

- We never directly observe quarks
 - always bound in hadrons
- Unavoidable hadronic uncertainties
 - reduced by studying ratios (asymmetries)
- Essential to understand strong interaction effects
 - interesting of themselves
 - can help (eg. to reduce ambiguities)
- Note: virtual quarks are not bound in hadrons

What Would We Like To Measure at B Factories?

(pre B-factory answer)

- Does CP violation exist in the B system?
 - How about direct CP violation?
- Are there large CP violation effects?
 - How about large direct CP violation?
- Is everything consistent with the KM mechanism?

Does CP violation exist in the B system?

 $B^0 \to J/\psi K^0$

Does CP violation exist in the B system?

How about direct CP violation?

How about direct CP violation?

How about large (direct) CP violation?

$$B \rightarrow \pi^+\pi^-$$

BELLE - PRL 95 (2005) 101801

(Small discrepancy with BABAR)

$$B^0 o
ho^\pm\pi^\mp$$

Is Everything Consistent With The KM Mechanism?

What Would We Like To Measure at B Factories?

(pre B-factory answer)

- Does CP violation exist in the B system?
 - How about direct CP violation?
- Are there large CP violation effects?
 - How about large direct CP violation? **
- <u>Is everything consistent with the KM mechanism?</u>
 more or less, so far ...

Is Everything Consistent With The KM Mechanism?

More or less, so far, but ...

- Slight tension between V_{ub} and sin(2β)
- Кп (& пп) puzzle
- Polarization puzzle (B → VV)
- Discrepancies in hadronic b→s TDCPV

Discrepancies in hadronic b→s TDCPV

PRL 94 (2005) 191802

Improved & additional measurements essential

The Current Status

Record Luminosities

Features of e⁺e⁻→Y(4S) B Factories

- High luminosity
 - can search for rare decay modes
- Clean environment
 - can reconstruct almost any decay, even with neutrinos
- Well understood backgrounds
 - mainly QED; fragmentation in e⁺e⁻ → qq can be studied
- Asymmetric energies
 - can make time-dependent measurements
- Coherent production of BB pairs
 - can tag flavour with high efficiency

BB event reconstruction

BB event reconstruction

ARGUS experiment
Observation of BB mixing
103/pb
PLB 192 (1987) 245

What Would We Like To Measure at B Factories?

The key features of the B factories, make these (arguably) the best machines to search for new physics, for the next few years.

... We should fully exploit this potential

The Rebirth of "Old Physics"

- Most cited B factory publications (>150 cites, from SPIRES):
- BELLE
 - OBSERVATION OF LARGE CP VIOLATION IN THE NEUTRAL B MESON SYSTEM (340)
 - A MEASUREMENT OF THE BRANCHING FRACTION FOR THE INCLUSIVE B ---> X(S) GAMMA DECAYS
 WITH BELLE (244)
 - AN IMPROVED MEASUREMENT OF MIXING INDUCED CP VIOLATION IN THE NEUTRAL B MESON SYSTEM (216)
 - OBSERVATION OF A NARROW CHARMONIUM LIKE STATE IN EXCLUSIVE B+- ---> K+- PI+ PI- J / PSI DECAYS (171)

BABAR

- OBSERVATION OF CP VIOLATION IN THE B0 MESON SYSTEM (329)
- MEASUREMENT OF THE CP VIOLATING ASYMMETRY AMPLITUDE SIN 2BETA (320)
- OBSERVATION OF A NARROW MESON DECAYING TO D+(S) PI0 AT A MASS OF 2.32-GEV/C**2 (271)
- MEASUREMENTS OF BRANCHING FRACTIONS AND CP VIOLATING ASYMMETRIES IN B0 ---> PI+ PI-, K+ PI-, K+ K- DECAYS (192)

OBSERVATION OF A NARROW MESON DECAYING TO D+(S) PIO

PRL 90 (2003) 242001

Quickly confirmed by Belle (& CLEO):

PRL 91 (2003) 262002

OBSERVATION OF A NARROW CHARMONIUM-LIKE STATE

PRL 91 (2003) 262001

Quickly confirmed by Babar (& CDF &D0):

PRD 73 (2006) 011101

Spectroscopy

- Many important results
- Discovery of ~1 new particle/year
 - all newly observed particles need confirmation
- Huge impact on understanding of charm and (especially) charmonium
- How about lower energies?
 - Various unresolved/controversial issues
 - scalar mesons
 - glueballs

Low Energy Spectroscopy

- Various possibilities for studies
 - B → $(η,η',φ)π^+π^-$ K (and others)
 - B \rightarrow ππK, KKK

3 body charmless B decays

also D decays, but not in this talk

- Some progress already in this direction
 - Study of three-body charmless B decays
 - Belle; PRD 65 (2002) 092005; 65 cites
 - Study of B meson decays to three-body charmless hadronic final states
 - Belle; PRD 69 (2004) 012001; 47 cites
 - − Dalitz analysis of the three-body charmless decays $B^+ \rightarrow K^+ \pi^+ \pi^-$ and $B^+ \rightarrow K^+ K^+ K^-$
 - Belle; PRD 71 (2005) 092003; 23 cites
 - Amplitude Analysis of the Decay $B^{+-} \rightarrow \pi^{+-}\pi^{-+}$
 - Babar; PRD 72 (2005) 052002; 3 cites
 - Dalitz-plot analysis of the decays $B^{+-} \to K^{+-} \pi^{+-} \pi^{-+}$
 - Babar; PRD 72 (2005) 072003; 8 cites

Belle; PRD 71 (2005) 092003

 $B^+ \rightarrow \Pi^+ \Pi^+ \Pi^-$

Three Body Charmless B Decays

- The study of 3b0c B decays raises old, unresolved questions related to hadronic effects
- New experimental information raises prospect to address (some parts of) these questions
- Essential to deal with hadronic effects to maximize sensitivity to possible new physics effects

Search for New Physics at B Factories

- Loops ⇒ high energy scales
- New particles effect SM predictions for observables
 - rates (large uncertainties)
 - phases
 - polarizations
 - asymmetries
- Charmless (rare) B decays an important testing ground

Charmless Hadronic B Decays

- Generally, at least two Standard Model contributions
 - penguin
 - tree
 - relative weak phase of γ (for b \rightarrow sqq transitions)
- Difficult to disentangle
 - eg. A_{CP}(Kπ) ∝ sin(γ), but hard to extract γ
- Need additional experimental observables
- Theory input also invaluable

Additional Observables

- Amplitude analysis of 3 body decays ("Dalitz analysis") allows measurement of the total phase and magnitude of each contributing quasi-two-body resonance
 - both phase and magnitude measured relative to something
- Contrast situation for 2 body decays, where only magnitude is observed
 - additional sensitivity to (eg.) direct CP violation
 - possibility to disentangle penguin and tree contributions

Direct CP Violation in 3 Body B Decay

Belle, hep-ex/0512066 (submitted to PRL)

Clear asymmetry in the ρ region

$$A_{CP}(\rho K^{+}) = (30 + -11 + -2^{+11})\%$$
 3.9 σ significance first evidence for CP in any charged particle!

Measurement of α from $B \rightarrow \pi^{\dagger}\pi^{\bar{}}\pi^{0}$

- $B \to \pi^+\pi^-$: measure $S_{\pi\pi} \& C_{\pi\pi}$
 - not enough information to extract $\alpha,$ IP/Tl & $\delta_{_{\text{P-T}}}$
- B \rightarrow π⁺π⁻π⁰: interfering contributions from ρ⁺π⁻, π⁺ρ⁻(& ρ⁰π⁰)
 - sensitivity to phases allows all parameters to be extracted
 - BW phase variation breaks degeneracy in solutions

Methods to Search for NP in 3b0c B Decays

Extract:

- $-\alpha$ from B $\rightarrow \pi^+\pi^-\pi^0$
- γ from B \rightarrow Kππ, KKK
- $-\beta_{\text{eff}} \text{ from B} \rightarrow K_{\text{S}} \pi^{+} \pi^{-}, \ K_{\text{s}} \pi^{0} \pi^{0}, \ K_{\text{s}} K^{+} K^{-}, \ K_{\text{s}} K_{\text{s}} K_{\text{s}}$
 - Q2B contributions from $K_s \rho^o$, $K_s f_o$, $K^* \pi^o$, etc.
 - K_sπ⁰π⁰, K_sK_s are CP eigenstates
 - DP analysis not essential, but gives additional information

Are measured values consistent with expectation/CKM fits?

Methods to Search for NP in 3b0c B Decays

- Can we do more?
 - extract parameters like IP/TI, δ_{P-T} for each Q2B term
 - compare these to theory SM prediction
 - alternatively, can be used as input for theoretical models
 - compare with parameters measured in different final state
 - can we handle $K_s f_0 \to K_s K^+ K^- vs. K_s f_0 \to K_s \pi^+ \pi^-$?
 - how about $\pi^+(K^+\pi^-)_{S \text{ wave}}$ vs. $\pi^+(K^0\pi^0)_{S \text{ wave}}$?
 - compare with parameters measured in different processes and at different experiments
- Answer is yes, but how much more?
 - open question for this workshop

Pre-Final comments

- Three body charmless B decay analyses are difficult
 - numerous complicated aspects to the physics
 - technically challenging
- Be prepared to be patient, and careful
 - high standards of internal quality control essential
- 3b0c B decay program will continue for the B factory lifetime
 - Nonetheless, timely publication of results essential
- If 3b0c starts looking too easy, you can move to 4b0c

What Would We Like To Measure at B Factories?

- Study Dalitz plot structure in all possible charmless three body B decays
 - including many not mentioned in this talk
 - relate results between different modes, if possible
- Search for CP violation as generically as possible
 - direct CP in flavour specific modes
 - time-dependent CP violation
- Maximize understanding of hadronic interactions
- Search for new physics